The utilization of crisp code in hybrid reactor studies

Detalhes bibliográficos
Autor(a) principal: Anéfalos,S.
Data de Publicação: 2005
Outros Autores: Deppman,A., Silva,G., Maiorino,J. R., Santos,A. dos, Duarte,S. B., Tavares,O. A. P., Garcia,F.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Brazilian Journal of Physics
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332005000500053
Resumo: One of the main applications of the Hybrid Reactors (ADS - Accelerator Driven System) is the incineration of transuranics (TRU) by fast neutrons that emerge from a spallation source in a sub critical reactor waste burner [1, 2]. For this application, an accurate description and prediction of spallation reaction is necessary, including all the characteristics concerning spatial and energetic angular distributions, spallation products and neutron multiplicity. To describe the nuclear reactions at intermediate and high energies, Monte Carlo calculations have been used. The CRISP package considers the intranuclear cascade (INC) that occurs during the spallation process in a realistic time-sequence approach in which all particles inside the nucleus can participate in the cascade and the nuclear density fluctuations are naturally taken into account during the process. The occupation number of each single particle level is considered as a function of time and a more realistic Pauli blocking mechanism can be performed. None of the existing models have effectively used all those features. The evaporation of protons and alpha particles are taken into account making possible the correct prediction of fissilities of actinides and pre-actinides [3]. Another implementation is the NN single-pion production reaction. This reaction is especially relevant if one is interested in neutron or proton multiplicities, since the creation/emission of pions is directly related with the excitation energy of the residual nucleus. We will present some results obtained with the CRISP package for proton-nucleus reaction at intermediate and high energies. This package was obtained by the coupling of the MCMC [4] and MCEF [5] codes, with the introduction of some improvements, such as better Pauli blocking mechanism, which constrains the residual nucleus energetic evolution to the Pauli Principle from the ground-state to the final compound-nucleus formed at the end of the intranuclear cascade process, and introduction of the most relevant resonant excitation and the NN single pion production channel. The results of interest for ADS development are consistent with the experimental data at different proton energies. More detailed calculations are being performed for studying other features of proton-nucleus reactions and with different targets.
id SBF-2_06b762138648db3959a2d341a2cc86a2
oai_identifier_str oai:scielo:S0103-97332005000500053
network_acronym_str SBF-2
network_name_str Brazilian Journal of Physics
repository_id_str
spelling The utilization of crisp code in hybrid reactor studiesOne of the main applications of the Hybrid Reactors (ADS - Accelerator Driven System) is the incineration of transuranics (TRU) by fast neutrons that emerge from a spallation source in a sub critical reactor waste burner [1, 2]. For this application, an accurate description and prediction of spallation reaction is necessary, including all the characteristics concerning spatial and energetic angular distributions, spallation products and neutron multiplicity. To describe the nuclear reactions at intermediate and high energies, Monte Carlo calculations have been used. The CRISP package considers the intranuclear cascade (INC) that occurs during the spallation process in a realistic time-sequence approach in which all particles inside the nucleus can participate in the cascade and the nuclear density fluctuations are naturally taken into account during the process. The occupation number of each single particle level is considered as a function of time and a more realistic Pauli blocking mechanism can be performed. None of the existing models have effectively used all those features. The evaporation of protons and alpha particles are taken into account making possible the correct prediction of fissilities of actinides and pre-actinides [3]. Another implementation is the NN single-pion production reaction. This reaction is especially relevant if one is interested in neutron or proton multiplicities, since the creation/emission of pions is directly related with the excitation energy of the residual nucleus. We will present some results obtained with the CRISP package for proton-nucleus reaction at intermediate and high energies. This package was obtained by the coupling of the MCMC [4] and MCEF [5] codes, with the introduction of some improvements, such as better Pauli blocking mechanism, which constrains the residual nucleus energetic evolution to the Pauli Principle from the ground-state to the final compound-nucleus formed at the end of the intranuclear cascade process, and introduction of the most relevant resonant excitation and the NN single pion production channel. The results of interest for ADS development are consistent with the experimental data at different proton energies. More detailed calculations are being performed for studying other features of proton-nucleus reactions and with different targets.Sociedade Brasileira de Física2005-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332005000500053Brazilian Journal of Physics v.35 n.3b 2005reponame:Brazilian Journal of Physicsinstname:Sociedade Brasileira de Física (SBF)instacron:SBF10.1590/S0103-97332005000500053info:eu-repo/semantics/openAccessAnéfalos,S.Deppman,A.Silva,G.Maiorino,J. R.Santos,A. dosDuarte,S. B.Tavares,O. A. P.Garcia,F.eng2005-11-07T00:00:00Zoai:scielo:S0103-97332005000500053Revistahttp://www.sbfisica.org.br/v1/home/index.php/pt/ONGhttps://old.scielo.br/oai/scielo-oai.phpsbfisica@sbfisica.org.br||sbfisica@sbfisica.org.br1678-44480103-9733opendoar:2005-11-07T00:00Brazilian Journal of Physics - Sociedade Brasileira de Física (SBF)false
dc.title.none.fl_str_mv The utilization of crisp code in hybrid reactor studies
title The utilization of crisp code in hybrid reactor studies
spellingShingle The utilization of crisp code in hybrid reactor studies
Anéfalos,S.
title_short The utilization of crisp code in hybrid reactor studies
title_full The utilization of crisp code in hybrid reactor studies
title_fullStr The utilization of crisp code in hybrid reactor studies
title_full_unstemmed The utilization of crisp code in hybrid reactor studies
title_sort The utilization of crisp code in hybrid reactor studies
author Anéfalos,S.
author_facet Anéfalos,S.
Deppman,A.
Silva,G.
Maiorino,J. R.
Santos,A. dos
Duarte,S. B.
Tavares,O. A. P.
Garcia,F.
author_role author
author2 Deppman,A.
Silva,G.
Maiorino,J. R.
Santos,A. dos
Duarte,S. B.
Tavares,O. A. P.
Garcia,F.
author2_role author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Anéfalos,S.
Deppman,A.
Silva,G.
Maiorino,J. R.
Santos,A. dos
Duarte,S. B.
Tavares,O. A. P.
Garcia,F.
description One of the main applications of the Hybrid Reactors (ADS - Accelerator Driven System) is the incineration of transuranics (TRU) by fast neutrons that emerge from a spallation source in a sub critical reactor waste burner [1, 2]. For this application, an accurate description and prediction of spallation reaction is necessary, including all the characteristics concerning spatial and energetic angular distributions, spallation products and neutron multiplicity. To describe the nuclear reactions at intermediate and high energies, Monte Carlo calculations have been used. The CRISP package considers the intranuclear cascade (INC) that occurs during the spallation process in a realistic time-sequence approach in which all particles inside the nucleus can participate in the cascade and the nuclear density fluctuations are naturally taken into account during the process. The occupation number of each single particle level is considered as a function of time and a more realistic Pauli blocking mechanism can be performed. None of the existing models have effectively used all those features. The evaporation of protons and alpha particles are taken into account making possible the correct prediction of fissilities of actinides and pre-actinides [3]. Another implementation is the NN single-pion production reaction. This reaction is especially relevant if one is interested in neutron or proton multiplicities, since the creation/emission of pions is directly related with the excitation energy of the residual nucleus. We will present some results obtained with the CRISP package for proton-nucleus reaction at intermediate and high energies. This package was obtained by the coupling of the MCMC [4] and MCEF [5] codes, with the introduction of some improvements, such as better Pauli blocking mechanism, which constrains the residual nucleus energetic evolution to the Pauli Principle from the ground-state to the final compound-nucleus formed at the end of the intranuclear cascade process, and introduction of the most relevant resonant excitation and the NN single pion production channel. The results of interest for ADS development are consistent with the experimental data at different proton energies. More detailed calculations are being performed for studying other features of proton-nucleus reactions and with different targets.
publishDate 2005
dc.date.none.fl_str_mv 2005-09-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332005000500053
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332005000500053
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0103-97332005000500053
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Física
publisher.none.fl_str_mv Sociedade Brasileira de Física
dc.source.none.fl_str_mv Brazilian Journal of Physics v.35 n.3b 2005
reponame:Brazilian Journal of Physics
instname:Sociedade Brasileira de Física (SBF)
instacron:SBF
instname_str Sociedade Brasileira de Física (SBF)
instacron_str SBF
institution SBF
reponame_str Brazilian Journal of Physics
collection Brazilian Journal of Physics
repository.name.fl_str_mv Brazilian Journal of Physics - Sociedade Brasileira de Física (SBF)
repository.mail.fl_str_mv sbfisica@sbfisica.org.br||sbfisica@sbfisica.org.br
_version_ 1754734862269415424