Molecular microstructure in thermotropic liquid crystals studied by nuclear quadrupole resonance spectroscopy

Detalhes bibliográficos
Autor(a) principal: Pusiol,Daniel J.
Data de Publicação: 1998
Outros Autores: Anoardo,Esteban
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Brazilian Journal of Physics
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97331998000400004
Resumo: Nuclear Quadrupole Resonance studies in Nematic and Smectic C thermotropic liquid crystalline mesophases of p-heptyl azoxyanizole are reported. The local molecular microstructure is modeled from NQR spectra. In the Smectic C mesophase, the NQR data is explained by assuming two features: i) biaxiality in the electric field gradients at the sites occupied by 14N nuclei, and ii) the elemental unit cell of the mesophase is composed by two HpAb molecules. These bimolecular units coexist together with single molecules and the relative proportions change with temperature, the quantity of individual molecules and the relative proportions change with temperature, the quantity of individual molecules being predominant as the temperature approaches the Nematic phase transition. At the lowest temperatures in the Nematic mesophase the NQR spectrum behaves similarly to the corresponding at low temperatures in the SmC mesophase; this means that we can propose again the existence of a huge number of bimolecular and biaxial unit cells. At higher temperatures the transition to single molecular units is deduced from NQR spectra. That transition is characterized by the one describing the passage from a partially disordered molecular system -the system is conserving some local anisotropic properties of symmetry from the crystalline solid state- to a partially ordered system that resembles an oriented liquid.
id SBF-2_1825bc65dea368c3326d63ce7d66e090
oai_identifier_str oai:scielo:S0103-97331998000400004
network_acronym_str SBF-2
network_name_str Brazilian Journal of Physics
repository_id_str
spelling Molecular microstructure in thermotropic liquid crystals studied by nuclear quadrupole resonance spectroscopyNuclear Quadrupole Resonance studies in Nematic and Smectic C thermotropic liquid crystalline mesophases of p-heptyl azoxyanizole are reported. The local molecular microstructure is modeled from NQR spectra. In the Smectic C mesophase, the NQR data is explained by assuming two features: i) biaxiality in the electric field gradients at the sites occupied by 14N nuclei, and ii) the elemental unit cell of the mesophase is composed by two HpAb molecules. These bimolecular units coexist together with single molecules and the relative proportions change with temperature, the quantity of individual molecules and the relative proportions change with temperature, the quantity of individual molecules being predominant as the temperature approaches the Nematic phase transition. At the lowest temperatures in the Nematic mesophase the NQR spectrum behaves similarly to the corresponding at low temperatures in the SmC mesophase; this means that we can propose again the existence of a huge number of bimolecular and biaxial unit cells. At higher temperatures the transition to single molecular units is deduced from NQR spectra. That transition is characterized by the one describing the passage from a partially disordered molecular system -the system is conserving some local anisotropic properties of symmetry from the crystalline solid state- to a partially ordered system that resembles an oriented liquid.Sociedade Brasileira de Física1998-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97331998000400004Brazilian Journal of Physics v.28 n.4 1998reponame:Brazilian Journal of Physicsinstname:Sociedade Brasileira de Física (SBF)instacron:SBF10.1590/S0103-97331998000400004info:eu-repo/semantics/openAccessPusiol,Daniel J.Anoardo,Estebaneng1999-08-26T00:00:00Zoai:scielo:S0103-97331998000400004Revistahttp://www.sbfisica.org.br/v1/home/index.php/pt/ONGhttps://old.scielo.br/oai/scielo-oai.phpsbfisica@sbfisica.org.br||sbfisica@sbfisica.org.br1678-44480103-9733opendoar:1999-08-26T00:00Brazilian Journal of Physics - Sociedade Brasileira de Física (SBF)false
dc.title.none.fl_str_mv Molecular microstructure in thermotropic liquid crystals studied by nuclear quadrupole resonance spectroscopy
title Molecular microstructure in thermotropic liquid crystals studied by nuclear quadrupole resonance spectroscopy
spellingShingle Molecular microstructure in thermotropic liquid crystals studied by nuclear quadrupole resonance spectroscopy
Pusiol,Daniel J.
title_short Molecular microstructure in thermotropic liquid crystals studied by nuclear quadrupole resonance spectroscopy
title_full Molecular microstructure in thermotropic liquid crystals studied by nuclear quadrupole resonance spectroscopy
title_fullStr Molecular microstructure in thermotropic liquid crystals studied by nuclear quadrupole resonance spectroscopy
title_full_unstemmed Molecular microstructure in thermotropic liquid crystals studied by nuclear quadrupole resonance spectroscopy
title_sort Molecular microstructure in thermotropic liquid crystals studied by nuclear quadrupole resonance spectroscopy
author Pusiol,Daniel J.
author_facet Pusiol,Daniel J.
Anoardo,Esteban
author_role author
author2 Anoardo,Esteban
author2_role author
dc.contributor.author.fl_str_mv Pusiol,Daniel J.
Anoardo,Esteban
description Nuclear Quadrupole Resonance studies in Nematic and Smectic C thermotropic liquid crystalline mesophases of p-heptyl azoxyanizole are reported. The local molecular microstructure is modeled from NQR spectra. In the Smectic C mesophase, the NQR data is explained by assuming two features: i) biaxiality in the electric field gradients at the sites occupied by 14N nuclei, and ii) the elemental unit cell of the mesophase is composed by two HpAb molecules. These bimolecular units coexist together with single molecules and the relative proportions change with temperature, the quantity of individual molecules and the relative proportions change with temperature, the quantity of individual molecules being predominant as the temperature approaches the Nematic phase transition. At the lowest temperatures in the Nematic mesophase the NQR spectrum behaves similarly to the corresponding at low temperatures in the SmC mesophase; this means that we can propose again the existence of a huge number of bimolecular and biaxial unit cells. At higher temperatures the transition to single molecular units is deduced from NQR spectra. That transition is characterized by the one describing the passage from a partially disordered molecular system -the system is conserving some local anisotropic properties of symmetry from the crystalline solid state- to a partially ordered system that resembles an oriented liquid.
publishDate 1998
dc.date.none.fl_str_mv 1998-12-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97331998000400004
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97331998000400004
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0103-97331998000400004
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Física
publisher.none.fl_str_mv Sociedade Brasileira de Física
dc.source.none.fl_str_mv Brazilian Journal of Physics v.28 n.4 1998
reponame:Brazilian Journal of Physics
instname:Sociedade Brasileira de Física (SBF)
instacron:SBF
instname_str Sociedade Brasileira de Física (SBF)
instacron_str SBF
institution SBF
reponame_str Brazilian Journal of Physics
collection Brazilian Journal of Physics
repository.name.fl_str_mv Brazilian Journal of Physics - Sociedade Brasileira de Física (SBF)
repository.mail.fl_str_mv sbfisica@sbfisica.org.br||sbfisica@sbfisica.org.br
_version_ 1754734858457841664