Functional-integral based perturbation theory for the Malthus-Verhulst process
Autor(a) principal: | |
---|---|
Data de Publicação: | 2006 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Brazilian Journal of Physics |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332006000700022 |
Resumo: | We apply a functional-integral formalism for Markovian birth and death processes to determine asymptotic corrections to mean-field theory in the Malthus-Verhulst process (MVP). Expanding about the stationary mean-field solution, we identify an expansion parameter that is small in the limit of large mean population, and derive a diagrammatic expansion in powers of this parameter. The series is evaluated to fifth order using computational enumeration of diagrams. Although the MVP has no stationary state, we obtain good agreement with the associated quasi-stationary values for the moments of the population size, provided the mean population size is not small. We compare our results with those of van Kampen's omega-expansion, and apply our method to the MVP with input, for which a stationary state does exist. We also devise a modified Fokker-Planck approach for this case. |
id |
SBF-2_29705b610cc342fe5cad7835913d4c3c |
---|---|
oai_identifier_str |
oai:scielo:S0103-97332006000700022 |
network_acronym_str |
SBF-2 |
network_name_str |
Brazilian Journal of Physics |
repository_id_str |
|
spelling |
Functional-integral based perturbation theory for the Malthus-Verhulst processBirth-and-death processMaster equationPath integralOmega-expansionDoi formalismWe apply a functional-integral formalism for Markovian birth and death processes to determine asymptotic corrections to mean-field theory in the Malthus-Verhulst process (MVP). Expanding about the stationary mean-field solution, we identify an expansion parameter that is small in the limit of large mean population, and derive a diagrammatic expansion in powers of this parameter. The series is evaluated to fifth order using computational enumeration of diagrams. Although the MVP has no stationary state, we obtain good agreement with the associated quasi-stationary values for the moments of the population size, provided the mean population size is not small. We compare our results with those of van Kampen's omega-expansion, and apply our method to the MVP with input, for which a stationary state does exist. We also devise a modified Fokker-Planck approach for this case.Sociedade Brasileira de Física2006-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332006000700022Brazilian Journal of Physics v.36 n.4a 2006reponame:Brazilian Journal of Physicsinstname:Sociedade Brasileira de Física (SBF)instacron:SBF10.1590/S0103-97332006000700022info:eu-repo/semantics/openAccessMoloney,Nicholas R.Dickman,Ronaldeng2007-06-21T00:00:00Zoai:scielo:S0103-97332006000700022Revistahttp://www.sbfisica.org.br/v1/home/index.php/pt/ONGhttps://old.scielo.br/oai/scielo-oai.phpsbfisica@sbfisica.org.br||sbfisica@sbfisica.org.br1678-44480103-9733opendoar:2007-06-21T00:00Brazilian Journal of Physics - Sociedade Brasileira de Física (SBF)false |
dc.title.none.fl_str_mv |
Functional-integral based perturbation theory for the Malthus-Verhulst process |
title |
Functional-integral based perturbation theory for the Malthus-Verhulst process |
spellingShingle |
Functional-integral based perturbation theory for the Malthus-Verhulst process Moloney,Nicholas R. Birth-and-death process Master equation Path integral Omega-expansion Doi formalism |
title_short |
Functional-integral based perturbation theory for the Malthus-Verhulst process |
title_full |
Functional-integral based perturbation theory for the Malthus-Verhulst process |
title_fullStr |
Functional-integral based perturbation theory for the Malthus-Verhulst process |
title_full_unstemmed |
Functional-integral based perturbation theory for the Malthus-Verhulst process |
title_sort |
Functional-integral based perturbation theory for the Malthus-Verhulst process |
author |
Moloney,Nicholas R. |
author_facet |
Moloney,Nicholas R. Dickman,Ronald |
author_role |
author |
author2 |
Dickman,Ronald |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Moloney,Nicholas R. Dickman,Ronald |
dc.subject.por.fl_str_mv |
Birth-and-death process Master equation Path integral Omega-expansion Doi formalism |
topic |
Birth-and-death process Master equation Path integral Omega-expansion Doi formalism |
description |
We apply a functional-integral formalism for Markovian birth and death processes to determine asymptotic corrections to mean-field theory in the Malthus-Verhulst process (MVP). Expanding about the stationary mean-field solution, we identify an expansion parameter that is small in the limit of large mean population, and derive a diagrammatic expansion in powers of this parameter. The series is evaluated to fifth order using computational enumeration of diagrams. Although the MVP has no stationary state, we obtain good agreement with the associated quasi-stationary values for the moments of the population size, provided the mean population size is not small. We compare our results with those of van Kampen's omega-expansion, and apply our method to the MVP with input, for which a stationary state does exist. We also devise a modified Fokker-Planck approach for this case. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006-12-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332006000700022 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332006000700022 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0103-97332006000700022 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Física |
publisher.none.fl_str_mv |
Sociedade Brasileira de Física |
dc.source.none.fl_str_mv |
Brazilian Journal of Physics v.36 n.4a 2006 reponame:Brazilian Journal of Physics instname:Sociedade Brasileira de Física (SBF) instacron:SBF |
instname_str |
Sociedade Brasileira de Física (SBF) |
instacron_str |
SBF |
institution |
SBF |
reponame_str |
Brazilian Journal of Physics |
collection |
Brazilian Journal of Physics |
repository.name.fl_str_mv |
Brazilian Journal of Physics - Sociedade Brasileira de Física (SBF) |
repository.mail.fl_str_mv |
sbfisica@sbfisica.org.br||sbfisica@sbfisica.org.br |
_version_ |
1754734863435431936 |