Functional-integral based perturbation theory for the Malthus-Verhulst process

Detalhes bibliográficos
Autor(a) principal: Moloney,Nicholas R.
Data de Publicação: 2006
Outros Autores: Dickman,Ronald
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Brazilian Journal of Physics
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332006000700022
Resumo: We apply a functional-integral formalism for Markovian birth and death processes to determine asymptotic corrections to mean-field theory in the Malthus-Verhulst process (MVP). Expanding about the stationary mean-field solution, we identify an expansion parameter that is small in the limit of large mean population, and derive a diagrammatic expansion in powers of this parameter. The series is evaluated to fifth order using computational enumeration of diagrams. Although the MVP has no stationary state, we obtain good agreement with the associated quasi-stationary values for the moments of the population size, provided the mean population size is not small. We compare our results with those of van Kampen's omega-expansion, and apply our method to the MVP with input, for which a stationary state does exist. We also devise a modified Fokker-Planck approach for this case.
id SBF-2_29705b610cc342fe5cad7835913d4c3c
oai_identifier_str oai:scielo:S0103-97332006000700022
network_acronym_str SBF-2
network_name_str Brazilian Journal of Physics
repository_id_str
spelling Functional-integral based perturbation theory for the Malthus-Verhulst processBirth-and-death processMaster equationPath integralOmega-expansionDoi formalismWe apply a functional-integral formalism for Markovian birth and death processes to determine asymptotic corrections to mean-field theory in the Malthus-Verhulst process (MVP). Expanding about the stationary mean-field solution, we identify an expansion parameter that is small in the limit of large mean population, and derive a diagrammatic expansion in powers of this parameter. The series is evaluated to fifth order using computational enumeration of diagrams. Although the MVP has no stationary state, we obtain good agreement with the associated quasi-stationary values for the moments of the population size, provided the mean population size is not small. We compare our results with those of van Kampen's omega-expansion, and apply our method to the MVP with input, for which a stationary state does exist. We also devise a modified Fokker-Planck approach for this case.Sociedade Brasileira de Física2006-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332006000700022Brazilian Journal of Physics v.36 n.4a 2006reponame:Brazilian Journal of Physicsinstname:Sociedade Brasileira de Física (SBF)instacron:SBF10.1590/S0103-97332006000700022info:eu-repo/semantics/openAccessMoloney,Nicholas R.Dickman,Ronaldeng2007-06-21T00:00:00Zoai:scielo:S0103-97332006000700022Revistahttp://www.sbfisica.org.br/v1/home/index.php/pt/ONGhttps://old.scielo.br/oai/scielo-oai.phpsbfisica@sbfisica.org.br||sbfisica@sbfisica.org.br1678-44480103-9733opendoar:2007-06-21T00:00Brazilian Journal of Physics - Sociedade Brasileira de Física (SBF)false
dc.title.none.fl_str_mv Functional-integral based perturbation theory for the Malthus-Verhulst process
title Functional-integral based perturbation theory for the Malthus-Verhulst process
spellingShingle Functional-integral based perturbation theory for the Malthus-Verhulst process
Moloney,Nicholas R.
Birth-and-death process
Master equation
Path integral
Omega-expansion
Doi formalism
title_short Functional-integral based perturbation theory for the Malthus-Verhulst process
title_full Functional-integral based perturbation theory for the Malthus-Verhulst process
title_fullStr Functional-integral based perturbation theory for the Malthus-Verhulst process
title_full_unstemmed Functional-integral based perturbation theory for the Malthus-Verhulst process
title_sort Functional-integral based perturbation theory for the Malthus-Verhulst process
author Moloney,Nicholas R.
author_facet Moloney,Nicholas R.
Dickman,Ronald
author_role author
author2 Dickman,Ronald
author2_role author
dc.contributor.author.fl_str_mv Moloney,Nicholas R.
Dickman,Ronald
dc.subject.por.fl_str_mv Birth-and-death process
Master equation
Path integral
Omega-expansion
Doi formalism
topic Birth-and-death process
Master equation
Path integral
Omega-expansion
Doi formalism
description We apply a functional-integral formalism for Markovian birth and death processes to determine asymptotic corrections to mean-field theory in the Malthus-Verhulst process (MVP). Expanding about the stationary mean-field solution, we identify an expansion parameter that is small in the limit of large mean population, and derive a diagrammatic expansion in powers of this parameter. The series is evaluated to fifth order using computational enumeration of diagrams. Although the MVP has no stationary state, we obtain good agreement with the associated quasi-stationary values for the moments of the population size, provided the mean population size is not small. We compare our results with those of van Kampen's omega-expansion, and apply our method to the MVP with input, for which a stationary state does exist. We also devise a modified Fokker-Planck approach for this case.
publishDate 2006
dc.date.none.fl_str_mv 2006-12-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332006000700022
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332006000700022
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0103-97332006000700022
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Física
publisher.none.fl_str_mv Sociedade Brasileira de Física
dc.source.none.fl_str_mv Brazilian Journal of Physics v.36 n.4a 2006
reponame:Brazilian Journal of Physics
instname:Sociedade Brasileira de Física (SBF)
instacron:SBF
instname_str Sociedade Brasileira de Física (SBF)
instacron_str SBF
institution SBF
reponame_str Brazilian Journal of Physics
collection Brazilian Journal of Physics
repository.name.fl_str_mv Brazilian Journal of Physics - Sociedade Brasileira de Física (SBF)
repository.mail.fl_str_mv sbfisica@sbfisica.org.br||sbfisica@sbfisica.org.br
_version_ 1754734863435431936