A 3-D four-wing attractor and its analysis

Detalhes bibliográficos
Autor(a) principal: Wang,Zenghui
Data de Publicação: 2009
Outros Autores: Sun,Yanxia, van Wyk,Barend Jacobus, Qi,Guoyuan, van Wyk,Michael Antonie
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Brazilian Journal of Physics
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332009000500007
Resumo: In this paper, several three dimensional (3-D) four-wing smooth quadratic autonomous chaotic systems are analyzed. It is shown that these systems have a number of similar features. A new 3-D continuous autonomous system is proposed based on these features. The new system can generate a four-wing chaotic attractor with less terms in the system equations. Several basic properties of the new system is analyzed by means of Lyapunov exponents, bifurcation diagrams and Poincare maps. Phase diagrams show that the equilibria are related to the existence of multiple wings.
id SBF-2_2ec21240545fe442b9a7982d6d52ce1d
oai_identifier_str oai:scielo:S0103-97332009000500007
network_acronym_str SBF-2
network_name_str Brazilian Journal of Physics
repository_id_str
spelling A 3-D four-wing attractor and its analysisChaosfour-wing attractorLyapunov exponentsbifurcationIn this paper, several three dimensional (3-D) four-wing smooth quadratic autonomous chaotic systems are analyzed. It is shown that these systems have a number of similar features. A new 3-D continuous autonomous system is proposed based on these features. The new system can generate a four-wing chaotic attractor with less terms in the system equations. Several basic properties of the new system is analyzed by means of Lyapunov exponents, bifurcation diagrams and Poincare maps. Phase diagrams show that the equilibria are related to the existence of multiple wings.Sociedade Brasileira de Física2009-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332009000500007Brazilian Journal of Physics v.39 n.3 2009reponame:Brazilian Journal of Physicsinstname:Sociedade Brasileira de Física (SBF)instacron:SBF10.1590/S0103-97332009000500007info:eu-repo/semantics/openAccessWang,ZenghuiSun,Yanxiavan Wyk,Barend JacobusQi,Guoyuanvan Wyk,Michael Antonieeng2009-10-15T00:00:00Zoai:scielo:S0103-97332009000500007Revistahttp://www.sbfisica.org.br/v1/home/index.php/pt/ONGhttps://old.scielo.br/oai/scielo-oai.phpsbfisica@sbfisica.org.br||sbfisica@sbfisica.org.br1678-44480103-9733opendoar:2009-10-15T00:00Brazilian Journal of Physics - Sociedade Brasileira de Física (SBF)false
dc.title.none.fl_str_mv A 3-D four-wing attractor and its analysis
title A 3-D four-wing attractor and its analysis
spellingShingle A 3-D four-wing attractor and its analysis
Wang,Zenghui
Chaos
four-wing attractor
Lyapunov exponents
bifurcation
title_short A 3-D four-wing attractor and its analysis
title_full A 3-D four-wing attractor and its analysis
title_fullStr A 3-D four-wing attractor and its analysis
title_full_unstemmed A 3-D four-wing attractor and its analysis
title_sort A 3-D four-wing attractor and its analysis
author Wang,Zenghui
author_facet Wang,Zenghui
Sun,Yanxia
van Wyk,Barend Jacobus
Qi,Guoyuan
van Wyk,Michael Antonie
author_role author
author2 Sun,Yanxia
van Wyk,Barend Jacobus
Qi,Guoyuan
van Wyk,Michael Antonie
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Wang,Zenghui
Sun,Yanxia
van Wyk,Barend Jacobus
Qi,Guoyuan
van Wyk,Michael Antonie
dc.subject.por.fl_str_mv Chaos
four-wing attractor
Lyapunov exponents
bifurcation
topic Chaos
four-wing attractor
Lyapunov exponents
bifurcation
description In this paper, several three dimensional (3-D) four-wing smooth quadratic autonomous chaotic systems are analyzed. It is shown that these systems have a number of similar features. A new 3-D continuous autonomous system is proposed based on these features. The new system can generate a four-wing chaotic attractor with less terms in the system equations. Several basic properties of the new system is analyzed by means of Lyapunov exponents, bifurcation diagrams and Poincare maps. Phase diagrams show that the equilibria are related to the existence of multiple wings.
publishDate 2009
dc.date.none.fl_str_mv 2009-09-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332009000500007
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332009000500007
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0103-97332009000500007
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Física
publisher.none.fl_str_mv Sociedade Brasileira de Física
dc.source.none.fl_str_mv Brazilian Journal of Physics v.39 n.3 2009
reponame:Brazilian Journal of Physics
instname:Sociedade Brasileira de Física (SBF)
instacron:SBF
instname_str Sociedade Brasileira de Física (SBF)
instacron_str SBF
institution SBF
reponame_str Brazilian Journal of Physics
collection Brazilian Journal of Physics
repository.name.fl_str_mv Brazilian Journal of Physics - Sociedade Brasileira de Física (SBF)
repository.mail.fl_str_mv sbfisica@sbfisica.org.br||sbfisica@sbfisica.org.br
_version_ 1754734865206476800