Catalysis with competitive reactions: static and dynamical critical behavior

Detalhes bibliográficos
Autor(a) principal: Costa,E. C. da
Data de Publicação: 2003
Outros Autores: Figueiredo,W.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Brazilian Journal of Physics
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332003000300010
Resumo: We studied in this work a competitive reaction model between monomers on a catalyst. The catalyst is represented by hypercubic lattices in d = 1, 2 and 3 dimensions. The model is described by the following reactions: A + A -> A2 and A + B -> AB, where A and B are two monomers that arrive at the surface with probabilities yA and yB, respectively. The model is studied in the adsorption controlled limit where the reaction rate is infinitely larger than the adsorption rate. We employ site and pair mean-field approximations as well as static and dynamical Monte Carlo simulations. We show that, for all d, the model exhibits a continuous phase transition between an active steady state and a B-absorbing state, when the parameter yA is varied through a critical value. Monte Carlo simulations and finite-size scaling analysis near the critical point are used to determine the static critical exponents b,n^ and the dynamical critical exponents n||, d, h and z. The results found for this competitive reaction model are in accordance with the conjecture of Grassberger, which states that any system undergoing a continuous phase transition from an active steady state to a single absorbing state, exhibits the same critical behavior of the directed percolation universality class.
id SBF-2_3d5085edfd994ed2b609facafcc5f984
oai_identifier_str oai:scielo:S0103-97332003000300010
network_acronym_str SBF-2
network_name_str Brazilian Journal of Physics
repository_id_str
spelling Catalysis with competitive reactions: static and dynamical critical behaviorWe studied in this work a competitive reaction model between monomers on a catalyst. The catalyst is represented by hypercubic lattices in d = 1, 2 and 3 dimensions. The model is described by the following reactions: A + A -> A2 and A + B -> AB, where A and B are two monomers that arrive at the surface with probabilities yA and yB, respectively. The model is studied in the adsorption controlled limit where the reaction rate is infinitely larger than the adsorption rate. We employ site and pair mean-field approximations as well as static and dynamical Monte Carlo simulations. We show that, for all d, the model exhibits a continuous phase transition between an active steady state and a B-absorbing state, when the parameter yA is varied through a critical value. Monte Carlo simulations and finite-size scaling analysis near the critical point are used to determine the static critical exponents b,n^ and the dynamical critical exponents n||, d, h and z. The results found for this competitive reaction model are in accordance with the conjecture of Grassberger, which states that any system undergoing a continuous phase transition from an active steady state to a single absorbing state, exhibits the same critical behavior of the directed percolation universality class.Sociedade Brasileira de Física2003-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332003000300010Brazilian Journal of Physics v.33 n.3 2003reponame:Brazilian Journal of Physicsinstname:Sociedade Brasileira de Física (SBF)instacron:SBF10.1590/S0103-97332003000300010info:eu-repo/semantics/openAccessCosta,E. C. daFigueiredo,W.eng2003-11-20T00:00:00Zoai:scielo:S0103-97332003000300010Revistahttp://www.sbfisica.org.br/v1/home/index.php/pt/ONGhttps://old.scielo.br/oai/scielo-oai.phpsbfisica@sbfisica.org.br||sbfisica@sbfisica.org.br1678-44480103-9733opendoar:2003-11-20T00:00Brazilian Journal of Physics - Sociedade Brasileira de Física (SBF)false
dc.title.none.fl_str_mv Catalysis with competitive reactions: static and dynamical critical behavior
title Catalysis with competitive reactions: static and dynamical critical behavior
spellingShingle Catalysis with competitive reactions: static and dynamical critical behavior
Costa,E. C. da
title_short Catalysis with competitive reactions: static and dynamical critical behavior
title_full Catalysis with competitive reactions: static and dynamical critical behavior
title_fullStr Catalysis with competitive reactions: static and dynamical critical behavior
title_full_unstemmed Catalysis with competitive reactions: static and dynamical critical behavior
title_sort Catalysis with competitive reactions: static and dynamical critical behavior
author Costa,E. C. da
author_facet Costa,E. C. da
Figueiredo,W.
author_role author
author2 Figueiredo,W.
author2_role author
dc.contributor.author.fl_str_mv Costa,E. C. da
Figueiredo,W.
description We studied in this work a competitive reaction model between monomers on a catalyst. The catalyst is represented by hypercubic lattices in d = 1, 2 and 3 dimensions. The model is described by the following reactions: A + A -> A2 and A + B -> AB, where A and B are two monomers that arrive at the surface with probabilities yA and yB, respectively. The model is studied in the adsorption controlled limit where the reaction rate is infinitely larger than the adsorption rate. We employ site and pair mean-field approximations as well as static and dynamical Monte Carlo simulations. We show that, for all d, the model exhibits a continuous phase transition between an active steady state and a B-absorbing state, when the parameter yA is varied through a critical value. Monte Carlo simulations and finite-size scaling analysis near the critical point are used to determine the static critical exponents b,n^ and the dynamical critical exponents n||, d, h and z. The results found for this competitive reaction model are in accordance with the conjecture of Grassberger, which states that any system undergoing a continuous phase transition from an active steady state to a single absorbing state, exhibits the same critical behavior of the directed percolation universality class.
publishDate 2003
dc.date.none.fl_str_mv 2003-09-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332003000300010
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332003000300010
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0103-97332003000300010
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Física
publisher.none.fl_str_mv Sociedade Brasileira de Física
dc.source.none.fl_str_mv Brazilian Journal of Physics v.33 n.3 2003
reponame:Brazilian Journal of Physics
instname:Sociedade Brasileira de Física (SBF)
instacron:SBF
instname_str Sociedade Brasileira de Física (SBF)
instacron_str SBF
institution SBF
reponame_str Brazilian Journal of Physics
collection Brazilian Journal of Physics
repository.name.fl_str_mv Brazilian Journal of Physics - Sociedade Brasileira de Física (SBF)
repository.mail.fl_str_mv sbfisica@sbfisica.org.br||sbfisica@sbfisica.org.br
_version_ 1754734860413435904