Quantum baker maps for spiraling chaotic motion
Autor(a) principal: | |
---|---|
Data de Publicação: | 2007 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Brazilian Journal of Physics |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332007000300016 |
Resumo: | We define a coupling of two baker maps through a pi/2 rotation both in position and in momentum. The classical trajectories thus exhibit spiraling, or loxodromic motion, which is only possible for conservative maps of at least two degrees of freedom. This loxodromic baker map is still hyperbolic, that is, fully chaotic. Quantization of this map follows on similar lines to other generalized baker maps. It is found that the eigenvalue spectrum for quantum loxodromic baker map is far removed from those of the canonical random matrix ensembles. An investigation of the symmetries of the loxodromic baker map reveals the cause of this deviation from the Bohigas-Giannoni-Schmit conjecture. |
id |
SBF-2_4deed9900ac3fb614c3f5b6458097626 |
---|---|
oai_identifier_str |
oai:scielo:S0103-97332007000300016 |
network_acronym_str |
SBF-2 |
network_name_str |
Brazilian Journal of Physics |
repository_id_str |
|
spelling |
Quantum baker maps for spiraling chaotic motionQuantum chaosBaker mapSpiraling motionWe define a coupling of two baker maps through a pi/2 rotation both in position and in momentum. The classical trajectories thus exhibit spiraling, or loxodromic motion, which is only possible for conservative maps of at least two degrees of freedom. This loxodromic baker map is still hyperbolic, that is, fully chaotic. Quantization of this map follows on similar lines to other generalized baker maps. It is found that the eigenvalue spectrum for quantum loxodromic baker map is far removed from those of the canonical random matrix ensembles. An investigation of the symmetries of the loxodromic baker map reveals the cause of this deviation from the Bohigas-Giannoni-Schmit conjecture.Sociedade Brasileira de Física2007-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332007000300016Brazilian Journal of Physics v.37 n.2a 2007reponame:Brazilian Journal of Physicsinstname:Sociedade Brasileira de Física (SBF)instacron:SBF10.1590/S0103-97332007000300016info:eu-repo/semantics/openAccessdel Santoro,Pedro R.Vallejos,Raúl O.Almeida,Alfredo M. Ozorio deeng2007-07-17T00:00:00Zoai:scielo:S0103-97332007000300016Revistahttp://www.sbfisica.org.br/v1/home/index.php/pt/ONGhttps://old.scielo.br/oai/scielo-oai.phpsbfisica@sbfisica.org.br||sbfisica@sbfisica.org.br1678-44480103-9733opendoar:2007-07-17T00:00Brazilian Journal of Physics - Sociedade Brasileira de Física (SBF)false |
dc.title.none.fl_str_mv |
Quantum baker maps for spiraling chaotic motion |
title |
Quantum baker maps for spiraling chaotic motion |
spellingShingle |
Quantum baker maps for spiraling chaotic motion del Santoro,Pedro R. Quantum chaos Baker map Spiraling motion |
title_short |
Quantum baker maps for spiraling chaotic motion |
title_full |
Quantum baker maps for spiraling chaotic motion |
title_fullStr |
Quantum baker maps for spiraling chaotic motion |
title_full_unstemmed |
Quantum baker maps for spiraling chaotic motion |
title_sort |
Quantum baker maps for spiraling chaotic motion |
author |
del Santoro,Pedro R. |
author_facet |
del Santoro,Pedro R. Vallejos,Raúl O. Almeida,Alfredo M. Ozorio de |
author_role |
author |
author2 |
Vallejos,Raúl O. Almeida,Alfredo M. Ozorio de |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
del Santoro,Pedro R. Vallejos,Raúl O. Almeida,Alfredo M. Ozorio de |
dc.subject.por.fl_str_mv |
Quantum chaos Baker map Spiraling motion |
topic |
Quantum chaos Baker map Spiraling motion |
description |
We define a coupling of two baker maps through a pi/2 rotation both in position and in momentum. The classical trajectories thus exhibit spiraling, or loxodromic motion, which is only possible for conservative maps of at least two degrees of freedom. This loxodromic baker map is still hyperbolic, that is, fully chaotic. Quantization of this map follows on similar lines to other generalized baker maps. It is found that the eigenvalue spectrum for quantum loxodromic baker map is far removed from those of the canonical random matrix ensembles. An investigation of the symmetries of the loxodromic baker map reveals the cause of this deviation from the Bohigas-Giannoni-Schmit conjecture. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-06-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332007000300016 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332007000300016 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0103-97332007000300016 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Física |
publisher.none.fl_str_mv |
Sociedade Brasileira de Física |
dc.source.none.fl_str_mv |
Brazilian Journal of Physics v.37 n.2a 2007 reponame:Brazilian Journal of Physics instname:Sociedade Brasileira de Física (SBF) instacron:SBF |
instname_str |
Sociedade Brasileira de Física (SBF) |
instacron_str |
SBF |
institution |
SBF |
reponame_str |
Brazilian Journal of Physics |
collection |
Brazilian Journal of Physics |
repository.name.fl_str_mv |
Brazilian Journal of Physics - Sociedade Brasileira de Física (SBF) |
repository.mail.fl_str_mv |
sbfisica@sbfisica.org.br||sbfisica@sbfisica.org.br |
_version_ |
1754734863782510593 |