Quantum baker maps for spiraling chaotic motion

Detalhes bibliográficos
Autor(a) principal: del Santoro,Pedro R.
Data de Publicação: 2007
Outros Autores: Vallejos,Raúl O., Almeida,Alfredo M. Ozorio de
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Brazilian Journal of Physics
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332007000300016
Resumo: We define a coupling of two baker maps through a pi/2 rotation both in position and in momentum. The classical trajectories thus exhibit spiraling, or loxodromic motion, which is only possible for conservative maps of at least two degrees of freedom. This loxodromic baker map is still hyperbolic, that is, fully chaotic. Quantization of this map follows on similar lines to other generalized baker maps. It is found that the eigenvalue spectrum for quantum loxodromic baker map is far removed from those of the canonical random matrix ensembles. An investigation of the symmetries of the loxodromic baker map reveals the cause of this deviation from the Bohigas-Giannoni-Schmit conjecture.
id SBF-2_4deed9900ac3fb614c3f5b6458097626
oai_identifier_str oai:scielo:S0103-97332007000300016
network_acronym_str SBF-2
network_name_str Brazilian Journal of Physics
repository_id_str
spelling Quantum baker maps for spiraling chaotic motionQuantum chaosBaker mapSpiraling motionWe define a coupling of two baker maps through a pi/2 rotation both in position and in momentum. The classical trajectories thus exhibit spiraling, or loxodromic motion, which is only possible for conservative maps of at least two degrees of freedom. This loxodromic baker map is still hyperbolic, that is, fully chaotic. Quantization of this map follows on similar lines to other generalized baker maps. It is found that the eigenvalue spectrum for quantum loxodromic baker map is far removed from those of the canonical random matrix ensembles. An investigation of the symmetries of the loxodromic baker map reveals the cause of this deviation from the Bohigas-Giannoni-Schmit conjecture.Sociedade Brasileira de Física2007-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332007000300016Brazilian Journal of Physics v.37 n.2a 2007reponame:Brazilian Journal of Physicsinstname:Sociedade Brasileira de Física (SBF)instacron:SBF10.1590/S0103-97332007000300016info:eu-repo/semantics/openAccessdel Santoro,Pedro R.Vallejos,Raúl O.Almeida,Alfredo M. Ozorio deeng2007-07-17T00:00:00Zoai:scielo:S0103-97332007000300016Revistahttp://www.sbfisica.org.br/v1/home/index.php/pt/ONGhttps://old.scielo.br/oai/scielo-oai.phpsbfisica@sbfisica.org.br||sbfisica@sbfisica.org.br1678-44480103-9733opendoar:2007-07-17T00:00Brazilian Journal of Physics - Sociedade Brasileira de Física (SBF)false
dc.title.none.fl_str_mv Quantum baker maps for spiraling chaotic motion
title Quantum baker maps for spiraling chaotic motion
spellingShingle Quantum baker maps for spiraling chaotic motion
del Santoro,Pedro R.
Quantum chaos
Baker map
Spiraling motion
title_short Quantum baker maps for spiraling chaotic motion
title_full Quantum baker maps for spiraling chaotic motion
title_fullStr Quantum baker maps for spiraling chaotic motion
title_full_unstemmed Quantum baker maps for spiraling chaotic motion
title_sort Quantum baker maps for spiraling chaotic motion
author del Santoro,Pedro R.
author_facet del Santoro,Pedro R.
Vallejos,Raúl O.
Almeida,Alfredo M. Ozorio de
author_role author
author2 Vallejos,Raúl O.
Almeida,Alfredo M. Ozorio de
author2_role author
author
dc.contributor.author.fl_str_mv del Santoro,Pedro R.
Vallejos,Raúl O.
Almeida,Alfredo M. Ozorio de
dc.subject.por.fl_str_mv Quantum chaos
Baker map
Spiraling motion
topic Quantum chaos
Baker map
Spiraling motion
description We define a coupling of two baker maps through a pi/2 rotation both in position and in momentum. The classical trajectories thus exhibit spiraling, or loxodromic motion, which is only possible for conservative maps of at least two degrees of freedom. This loxodromic baker map is still hyperbolic, that is, fully chaotic. Quantization of this map follows on similar lines to other generalized baker maps. It is found that the eigenvalue spectrum for quantum loxodromic baker map is far removed from those of the canonical random matrix ensembles. An investigation of the symmetries of the loxodromic baker map reveals the cause of this deviation from the Bohigas-Giannoni-Schmit conjecture.
publishDate 2007
dc.date.none.fl_str_mv 2007-06-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332007000300016
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332007000300016
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0103-97332007000300016
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Física
publisher.none.fl_str_mv Sociedade Brasileira de Física
dc.source.none.fl_str_mv Brazilian Journal of Physics v.37 n.2a 2007
reponame:Brazilian Journal of Physics
instname:Sociedade Brasileira de Física (SBF)
instacron:SBF
instname_str Sociedade Brasileira de Física (SBF)
instacron_str SBF
institution SBF
reponame_str Brazilian Journal of Physics
collection Brazilian Journal of Physics
repository.name.fl_str_mv Brazilian Journal of Physics - Sociedade Brasileira de Física (SBF)
repository.mail.fl_str_mv sbfisica@sbfisica.org.br||sbfisica@sbfisica.org.br
_version_ 1754734863782510593