Electron cyclotron emission simulation from TCABR plasmas

Bibliographic Details
Main Author: Lyvio,Eduardo H.
Publication Date: 2004
Other Authors: Rosa,P. R. da S.
Format: Article
Language: eng
Source: Brazilian Journal of Physics
Download full: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332004000800018
Summary: Electron cyclotron emission due to electrons described by a particular distribution function has been studied. The latter presents an extended tail generated by the interaction of the Lower Hybrid wave with the plasma as compared to the Maxwellian distribution function. For this purpose a new code has been developed which calculates for an arbitrary distribution function the intensity of radiation arriving at the plasma edge, the emission profile (as a function of position) and the optical depth (as a function of frequency) using the full dielectric tensor for a magnetized plasma. The electron distribution function is obtained by solving the Fokker-Planck equation in the frame of the quasilinear theory using a slab model. Results obtained for TCABR-like parameters show changes in the emission localized at positions where electron distribution function has been modified by the waves. Main parameter governing the changes in the electron cyclotron emission is the wave power. Changes in the plasma temperature and density profiles do not alter the emission profiles substantially. Reconstructed electron temperature profile has been obtained from the code radiation emission simulation, showing good agreement with the imposed temperature profile. The present results also showed that the changes in the emission profile in the region where the Lower Hybrid wave deposes its energy as compared with the emission profile of the plasma with Maxwellian distribution function are not so strong.
id SBF-2_5073712a33bcb31be285a5087d6cb876
oai_identifier_str oai:scielo:S0103-97332004000800018
network_acronym_str SBF-2
network_name_str Brazilian Journal of Physics
repository_id_str
spelling Electron cyclotron emission simulation from TCABR plasmasElectron cyclotron emission due to electrons described by a particular distribution function has been studied. The latter presents an extended tail generated by the interaction of the Lower Hybrid wave with the plasma as compared to the Maxwellian distribution function. For this purpose a new code has been developed which calculates for an arbitrary distribution function the intensity of radiation arriving at the plasma edge, the emission profile (as a function of position) and the optical depth (as a function of frequency) using the full dielectric tensor for a magnetized plasma. The electron distribution function is obtained by solving the Fokker-Planck equation in the frame of the quasilinear theory using a slab model. Results obtained for TCABR-like parameters show changes in the emission localized at positions where electron distribution function has been modified by the waves. Main parameter governing the changes in the electron cyclotron emission is the wave power. Changes in the plasma temperature and density profiles do not alter the emission profiles substantially. Reconstructed electron temperature profile has been obtained from the code radiation emission simulation, showing good agreement with the imposed temperature profile. The present results also showed that the changes in the emission profile in the region where the Lower Hybrid wave deposes its energy as compared with the emission profile of the plasma with Maxwellian distribution function are not so strong.Sociedade Brasileira de Física2004-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332004000800018Brazilian Journal of Physics v.34 n.4b 2004reponame:Brazilian Journal of Physicsinstname:Sociedade Brasileira de Física (SBF)instacron:SBF10.1590/S0103-97332004000800018info:eu-repo/semantics/openAccessLyvio,Eduardo H.Rosa,P. R. da S.eng2005-03-01T00:00:00Zoai:scielo:S0103-97332004000800018Revistahttp://www.sbfisica.org.br/v1/home/index.php/pt/ONGhttps://old.scielo.br/oai/scielo-oai.phpsbfisica@sbfisica.org.br||sbfisica@sbfisica.org.br1678-44480103-9733opendoar:2005-03-01T00:00Brazilian Journal of Physics - Sociedade Brasileira de Física (SBF)false
dc.title.none.fl_str_mv Electron cyclotron emission simulation from TCABR plasmas
title Electron cyclotron emission simulation from TCABR plasmas
spellingShingle Electron cyclotron emission simulation from TCABR plasmas
Lyvio,Eduardo H.
title_short Electron cyclotron emission simulation from TCABR plasmas
title_full Electron cyclotron emission simulation from TCABR plasmas
title_fullStr Electron cyclotron emission simulation from TCABR plasmas
title_full_unstemmed Electron cyclotron emission simulation from TCABR plasmas
title_sort Electron cyclotron emission simulation from TCABR plasmas
author Lyvio,Eduardo H.
author_facet Lyvio,Eduardo H.
Rosa,P. R. da S.
author_role author
author2 Rosa,P. R. da S.
author2_role author
dc.contributor.author.fl_str_mv Lyvio,Eduardo H.
Rosa,P. R. da S.
description Electron cyclotron emission due to electrons described by a particular distribution function has been studied. The latter presents an extended tail generated by the interaction of the Lower Hybrid wave with the plasma as compared to the Maxwellian distribution function. For this purpose a new code has been developed which calculates for an arbitrary distribution function the intensity of radiation arriving at the plasma edge, the emission profile (as a function of position) and the optical depth (as a function of frequency) using the full dielectric tensor for a magnetized plasma. The electron distribution function is obtained by solving the Fokker-Planck equation in the frame of the quasilinear theory using a slab model. Results obtained for TCABR-like parameters show changes in the emission localized at positions where electron distribution function has been modified by the waves. Main parameter governing the changes in the electron cyclotron emission is the wave power. Changes in the plasma temperature and density profiles do not alter the emission profiles substantially. Reconstructed electron temperature profile has been obtained from the code radiation emission simulation, showing good agreement with the imposed temperature profile. The present results also showed that the changes in the emission profile in the region where the Lower Hybrid wave deposes its energy as compared with the emission profile of the plasma with Maxwellian distribution function are not so strong.
publishDate 2004
dc.date.none.fl_str_mv 2004-12-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332004000800018
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332004000800018
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0103-97332004000800018
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Física
publisher.none.fl_str_mv Sociedade Brasileira de Física
dc.source.none.fl_str_mv Brazilian Journal of Physics v.34 n.4b 2004
reponame:Brazilian Journal of Physics
instname:Sociedade Brasileira de Física (SBF)
instacron:SBF
instname_str Sociedade Brasileira de Física (SBF)
instacron_str SBF
institution SBF
reponame_str Brazilian Journal of Physics
collection Brazilian Journal of Physics
repository.name.fl_str_mv Brazilian Journal of Physics - Sociedade Brasileira de Física (SBF)
repository.mail.fl_str_mv sbfisica@sbfisica.org.br||sbfisica@sbfisica.org.br
_version_ 1754734861602521088