Functional approach without path integrals to finite temperature free fermions

Detalhes bibliográficos
Autor(a) principal: Souza,S.M. de
Data de Publicação: 1999
Outros Autores: Rojas Santos,O., Thomaz,M.T.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Brazilian Journal of Physics
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97331999000300023
Resumo: Charret et al. applied the properties of Grassmann generators to develop a new method to calculate the coefficientes of the high temperature expansion of the grand canonical partition function of self-interacting fermionic models on d-dimensions (d > or = 1). The method explores the anti-commuting nature of fermionic fields and avoids the calculation of the fermionic path integral. We apply this new method to the relativistic free Dirac fermions and recover the known results in the literature without the beta-independent and mu-independent infinities that plague the continuum path integral formulation.
id SBF-2_64bb3e09f8b98a53abed75cbe6a21343
oai_identifier_str oai:scielo:S0103-97331999000300023
network_acronym_str SBF-2
network_name_str Brazilian Journal of Physics
repository_id_str
spelling Functional approach without path integrals to finite temperature free fermionsCharret et al. applied the properties of Grassmann generators to develop a new method to calculate the coefficientes of the high temperature expansion of the grand canonical partition function of self-interacting fermionic models on d-dimensions (d > or = 1). The method explores the anti-commuting nature of fermionic fields and avoids the calculation of the fermionic path integral. We apply this new method to the relativistic free Dirac fermions and recover the known results in the literature without the beta-independent and mu-independent infinities that plague the continuum path integral formulation.Sociedade Brasileira de Física1999-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97331999000300023Brazilian Journal of Physics v.29 n.3 1999reponame:Brazilian Journal of Physicsinstname:Sociedade Brasileira de Física (SBF)instacron:SBF10.1590/S0103-97331999000300023info:eu-repo/semantics/openAccessSouza,S.M. deRojas Santos,O.Thomaz,M.T.eng2000-08-07T00:00:00Zoai:scielo:S0103-97331999000300023Revistahttp://www.sbfisica.org.br/v1/home/index.php/pt/ONGhttps://old.scielo.br/oai/scielo-oai.phpsbfisica@sbfisica.org.br||sbfisica@sbfisica.org.br1678-44480103-9733opendoar:2000-08-07T00:00Brazilian Journal of Physics - Sociedade Brasileira de Física (SBF)false
dc.title.none.fl_str_mv Functional approach without path integrals to finite temperature free fermions
title Functional approach without path integrals to finite temperature free fermions
spellingShingle Functional approach without path integrals to finite temperature free fermions
Souza,S.M. de
title_short Functional approach without path integrals to finite temperature free fermions
title_full Functional approach without path integrals to finite temperature free fermions
title_fullStr Functional approach without path integrals to finite temperature free fermions
title_full_unstemmed Functional approach without path integrals to finite temperature free fermions
title_sort Functional approach without path integrals to finite temperature free fermions
author Souza,S.M. de
author_facet Souza,S.M. de
Rojas Santos,O.
Thomaz,M.T.
author_role author
author2 Rojas Santos,O.
Thomaz,M.T.
author2_role author
author
dc.contributor.author.fl_str_mv Souza,S.M. de
Rojas Santos,O.
Thomaz,M.T.
description Charret et al. applied the properties of Grassmann generators to develop a new method to calculate the coefficientes of the high temperature expansion of the grand canonical partition function of self-interacting fermionic models on d-dimensions (d > or = 1). The method explores the anti-commuting nature of fermionic fields and avoids the calculation of the fermionic path integral. We apply this new method to the relativistic free Dirac fermions and recover the known results in the literature without the beta-independent and mu-independent infinities that plague the continuum path integral formulation.
publishDate 1999
dc.date.none.fl_str_mv 1999-09-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97331999000300023
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97331999000300023
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0103-97331999000300023
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Física
publisher.none.fl_str_mv Sociedade Brasileira de Física
dc.source.none.fl_str_mv Brazilian Journal of Physics v.29 n.3 1999
reponame:Brazilian Journal of Physics
instname:Sociedade Brasileira de Física (SBF)
instacron:SBF
instname_str Sociedade Brasileira de Física (SBF)
instacron_str SBF
institution SBF
reponame_str Brazilian Journal of Physics
collection Brazilian Journal of Physics
repository.name.fl_str_mv Brazilian Journal of Physics - Sociedade Brasileira de Física (SBF)
repository.mail.fl_str_mv sbfisica@sbfisica.org.br||sbfisica@sbfisica.org.br
_version_ 1754734858781851648