First-principles study of the adsorption of PH3 on Ge(001) and Si(001) surfaces

Detalhes bibliográficos
Autor(a) principal: Miotto,R.
Data de Publicação: 2002
Outros Autores: Ferraz,A. C., Srivastava,G.P.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Brazilian Journal of Physics
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332002000200041
Resumo: Using a first-principles pseudopotential method we have compared the adsorption and dissociation of the common n-type dopant molecule PH3 on the Si(001)-(21) and Ge(001){(21) surfaces. We find that the dissociated state is energetically more favourable than the molecular state by 1.70(0.81) eV, whereas the latter is 0.58(0.25) eV more stable than the system composed of the free silicon(germanium) surface and PH3(g). The chemisorbed system is characterised by elongated Si{Si(Ge{Ge) dimers that are symmetric in the dissociative case and asymmetric in the molecular case and by the fact that the Si(Ge){PH2 as well as the PH3(ads) groups retain the pyramidal geometry of the phosphine molecule. Our dissociative adsorption model is further supported by our calculated vibrational modes, which are in good agreement with available experimental works.
id SBF-2_8b17b14bbbe28ebd994321c1f61526d9
oai_identifier_str oai:scielo:S0103-97332002000200041
network_acronym_str SBF-2
network_name_str Brazilian Journal of Physics
repository_id_str
spelling First-principles study of the adsorption of PH3 on Ge(001) and Si(001) surfacesUsing a first-principles pseudopotential method we have compared the adsorption and dissociation of the common n-type dopant molecule PH3 on the Si(001)-(21) and Ge(001){(21) surfaces. We find that the dissociated state is energetically more favourable than the molecular state by 1.70(0.81) eV, whereas the latter is 0.58(0.25) eV more stable than the system composed of the free silicon(germanium) surface and PH3(g). The chemisorbed system is characterised by elongated Si{Si(Ge{Ge) dimers that are symmetric in the dissociative case and asymmetric in the molecular case and by the fact that the Si(Ge){PH2 as well as the PH3(ads) groups retain the pyramidal geometry of the phosphine molecule. Our dissociative adsorption model is further supported by our calculated vibrational modes, which are in good agreement with available experimental works.Sociedade Brasileira de Física2002-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332002000200041Brazilian Journal of Physics v.32 n.2a 2002reponame:Brazilian Journal of Physicsinstname:Sociedade Brasileira de Física (SBF)instacron:SBF10.1590/S0103-97332002000200041info:eu-repo/semantics/openAccessMiotto,R.Ferraz,A. C.Srivastava,G.P.eng2002-11-26T00:00:00Zoai:scielo:S0103-97332002000200041Revistahttp://www.sbfisica.org.br/v1/home/index.php/pt/ONGhttps://old.scielo.br/oai/scielo-oai.phpsbfisica@sbfisica.org.br||sbfisica@sbfisica.org.br1678-44480103-9733opendoar:2002-11-26T00:00Brazilian Journal of Physics - Sociedade Brasileira de Física (SBF)false
dc.title.none.fl_str_mv First-principles study of the adsorption of PH3 on Ge(001) and Si(001) surfaces
title First-principles study of the adsorption of PH3 on Ge(001) and Si(001) surfaces
spellingShingle First-principles study of the adsorption of PH3 on Ge(001) and Si(001) surfaces
Miotto,R.
title_short First-principles study of the adsorption of PH3 on Ge(001) and Si(001) surfaces
title_full First-principles study of the adsorption of PH3 on Ge(001) and Si(001) surfaces
title_fullStr First-principles study of the adsorption of PH3 on Ge(001) and Si(001) surfaces
title_full_unstemmed First-principles study of the adsorption of PH3 on Ge(001) and Si(001) surfaces
title_sort First-principles study of the adsorption of PH3 on Ge(001) and Si(001) surfaces
author Miotto,R.
author_facet Miotto,R.
Ferraz,A. C.
Srivastava,G.P.
author_role author
author2 Ferraz,A. C.
Srivastava,G.P.
author2_role author
author
dc.contributor.author.fl_str_mv Miotto,R.
Ferraz,A. C.
Srivastava,G.P.
description Using a first-principles pseudopotential method we have compared the adsorption and dissociation of the common n-type dopant molecule PH3 on the Si(001)-(21) and Ge(001){(21) surfaces. We find that the dissociated state is energetically more favourable than the molecular state by 1.70(0.81) eV, whereas the latter is 0.58(0.25) eV more stable than the system composed of the free silicon(germanium) surface and PH3(g). The chemisorbed system is characterised by elongated Si{Si(Ge{Ge) dimers that are symmetric in the dissociative case and asymmetric in the molecular case and by the fact that the Si(Ge){PH2 as well as the PH3(ads) groups retain the pyramidal geometry of the phosphine molecule. Our dissociative adsorption model is further supported by our calculated vibrational modes, which are in good agreement with available experimental works.
publishDate 2002
dc.date.none.fl_str_mv 2002-06-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332002000200041
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332002000200041
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0103-97332002000200041
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Física
publisher.none.fl_str_mv Sociedade Brasileira de Física
dc.source.none.fl_str_mv Brazilian Journal of Physics v.32 n.2a 2002
reponame:Brazilian Journal of Physics
instname:Sociedade Brasileira de Física (SBF)
instacron:SBF
instname_str Sociedade Brasileira de Física (SBF)
instacron_str SBF
institution SBF
reponame_str Brazilian Journal of Physics
collection Brazilian Journal of Physics
repository.name.fl_str_mv Brazilian Journal of Physics - Sociedade Brasileira de Física (SBF)
repository.mail.fl_str_mv sbfisica@sbfisica.org.br||sbfisica@sbfisica.org.br
_version_ 1754734859779047424