The effect of correlated noise in a Gompertz tumor growth model

Detalhes bibliográficos
Autor(a) principal: Behera,Anita
Data de Publicação: 2008
Outros Autores: O'Rourke,S. Francesca C.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Brazilian Journal of Physics
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332008000200011
Resumo: We study the effect of noise in an avascular tumor growth model. The growth mechanism we consider is the Gompertz model. The steady state probability distributions and average population of tumor cells are analyzed within the Fokker-Planck formalism to investigate the importance of additive and multiplicative noise. We consider the effect of correlation on tumor growth for both the case of nonzero and zero correlation time. It is observed that the Gompertz model, driven by correlated noise exhibits a stochastic resonance and phase transition. This behaviour is attributed to multiplicative noise. In the case of nonzero correlation time, it is found that the correlation strength and correlation time have opposite effects on the steady state probability distribution. The Gompertz model simulations are also shown to be in qualitative agreement with another similiar non-bistable system, the logistic model.
id SBF-2_b3bf73215913921046df52c3e57f5141
oai_identifier_str oai:scielo:S0103-97332008000200011
network_acronym_str SBF-2
network_name_str Brazilian Journal of Physics
repository_id_str
spelling The effect of correlated noise in a Gompertz tumor growth modelFluctuation phenomenaRandom processesNoiseBrownian motionWe study the effect of noise in an avascular tumor growth model. The growth mechanism we consider is the Gompertz model. The steady state probability distributions and average population of tumor cells are analyzed within the Fokker-Planck formalism to investigate the importance of additive and multiplicative noise. We consider the effect of correlation on tumor growth for both the case of nonzero and zero correlation time. It is observed that the Gompertz model, driven by correlated noise exhibits a stochastic resonance and phase transition. This behaviour is attributed to multiplicative noise. In the case of nonzero correlation time, it is found that the correlation strength and correlation time have opposite effects on the steady state probability distribution. The Gompertz model simulations are also shown to be in qualitative agreement with another similiar non-bistable system, the logistic model.Sociedade Brasileira de Física2008-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332008000200011Brazilian Journal of Physics v.38 n.2 2008reponame:Brazilian Journal of Physicsinstname:Sociedade Brasileira de Física (SBF)instacron:SBF10.1590/S0103-97332008000200011info:eu-repo/semantics/openAccessBehera,AnitaO'Rourke,S. Francesca C.eng2008-06-18T00:00:00Zoai:scielo:S0103-97332008000200011Revistahttp://www.sbfisica.org.br/v1/home/index.php/pt/ONGhttps://old.scielo.br/oai/scielo-oai.phpsbfisica@sbfisica.org.br||sbfisica@sbfisica.org.br1678-44480103-9733opendoar:2008-06-18T00:00Brazilian Journal of Physics - Sociedade Brasileira de Física (SBF)false
dc.title.none.fl_str_mv The effect of correlated noise in a Gompertz tumor growth model
title The effect of correlated noise in a Gompertz tumor growth model
spellingShingle The effect of correlated noise in a Gompertz tumor growth model
Behera,Anita
Fluctuation phenomena
Random processes
Noise
Brownian motion
title_short The effect of correlated noise in a Gompertz tumor growth model
title_full The effect of correlated noise in a Gompertz tumor growth model
title_fullStr The effect of correlated noise in a Gompertz tumor growth model
title_full_unstemmed The effect of correlated noise in a Gompertz tumor growth model
title_sort The effect of correlated noise in a Gompertz tumor growth model
author Behera,Anita
author_facet Behera,Anita
O'Rourke,S. Francesca C.
author_role author
author2 O'Rourke,S. Francesca C.
author2_role author
dc.contributor.author.fl_str_mv Behera,Anita
O'Rourke,S. Francesca C.
dc.subject.por.fl_str_mv Fluctuation phenomena
Random processes
Noise
Brownian motion
topic Fluctuation phenomena
Random processes
Noise
Brownian motion
description We study the effect of noise in an avascular tumor growth model. The growth mechanism we consider is the Gompertz model. The steady state probability distributions and average population of tumor cells are analyzed within the Fokker-Planck formalism to investigate the importance of additive and multiplicative noise. We consider the effect of correlation on tumor growth for both the case of nonzero and zero correlation time. It is observed that the Gompertz model, driven by correlated noise exhibits a stochastic resonance and phase transition. This behaviour is attributed to multiplicative noise. In the case of nonzero correlation time, it is found that the correlation strength and correlation time have opposite effects on the steady state probability distribution. The Gompertz model simulations are also shown to be in qualitative agreement with another similiar non-bistable system, the logistic model.
publishDate 2008
dc.date.none.fl_str_mv 2008-06-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332008000200011
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332008000200011
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0103-97332008000200011
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Física
publisher.none.fl_str_mv Sociedade Brasileira de Física
dc.source.none.fl_str_mv Brazilian Journal of Physics v.38 n.2 2008
reponame:Brazilian Journal of Physics
instname:Sociedade Brasileira de Física (SBF)
instacron:SBF
instname_str Sociedade Brasileira de Física (SBF)
instacron_str SBF
institution SBF
reponame_str Brazilian Journal of Physics
collection Brazilian Journal of Physics
repository.name.fl_str_mv Brazilian Journal of Physics - Sociedade Brasileira de Física (SBF)
repository.mail.fl_str_mv sbfisica@sbfisica.org.br||sbfisica@sbfisica.org.br
_version_ 1754734864466182144