Transitions between periodic orbits and control of chaos assisted by an external force in Hamiltonian systems

Detalhes bibliográficos
Autor(a) principal: Angelo,R.M.
Data de Publicação: 1998
Outros Autores: Furuya,K., Aguiar,M.A.M. de
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Brazilian Journal of Physics
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97331998000300005
Resumo: We investigate the possibility of inducing transitions between periodic orbits in two-dimensional Hamiltonian systems by means of a time-localized external perturbation. We show that the amplitude of the perturbation can be approximately calculated in the limit of a delta-type force in terms of the initial and final periodic orbits. For a specific Hamiltonian, we show several numerical examples where the external perturbation, varied from delta-type to gaussian, allows transitions between specifically chosen members of families of periodic orbits. The same mechanism is then applied to move aperiodic chaotic orbits into periodic ones, presenting a new way to control chaotic behavior in Hamiltonian systems.
id SBF-2_c2334417c1b43c9af255c5afeb812192
oai_identifier_str oai:scielo:S0103-97331998000300005
network_acronym_str SBF-2
network_name_str Brazilian Journal of Physics
repository_id_str
spelling Transitions between periodic orbits and control of chaos assisted by an external force in Hamiltonian systemsWe investigate the possibility of inducing transitions between periodic orbits in two-dimensional Hamiltonian systems by means of a time-localized external perturbation. We show that the amplitude of the perturbation can be approximately calculated in the limit of a delta-type force in terms of the initial and final periodic orbits. For a specific Hamiltonian, we show several numerical examples where the external perturbation, varied from delta-type to gaussian, allows transitions between specifically chosen members of families of periodic orbits. The same mechanism is then applied to move aperiodic chaotic orbits into periodic ones, presenting a new way to control chaotic behavior in Hamiltonian systems.Sociedade Brasileira de Física1998-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97331998000300005Brazilian Journal of Physics v.28 n.3 1998reponame:Brazilian Journal of Physicsinstname:Sociedade Brasileira de Física (SBF)instacron:SBF10.1590/S0103-97331998000300005info:eu-repo/semantics/openAccessAngelo,R.M.Furuya,K.Aguiar,M.A.M. deeng1999-05-13T00:00:00Zoai:scielo:S0103-97331998000300005Revistahttp://www.sbfisica.org.br/v1/home/index.php/pt/ONGhttps://old.scielo.br/oai/scielo-oai.phpsbfisica@sbfisica.org.br||sbfisica@sbfisica.org.br1678-44480103-9733opendoar:1999-05-13T00:00Brazilian Journal of Physics - Sociedade Brasileira de Física (SBF)false
dc.title.none.fl_str_mv Transitions between periodic orbits and control of chaos assisted by an external force in Hamiltonian systems
title Transitions between periodic orbits and control of chaos assisted by an external force in Hamiltonian systems
spellingShingle Transitions between periodic orbits and control of chaos assisted by an external force in Hamiltonian systems
Angelo,R.M.
title_short Transitions between periodic orbits and control of chaos assisted by an external force in Hamiltonian systems
title_full Transitions between periodic orbits and control of chaos assisted by an external force in Hamiltonian systems
title_fullStr Transitions between periodic orbits and control of chaos assisted by an external force in Hamiltonian systems
title_full_unstemmed Transitions between periodic orbits and control of chaos assisted by an external force in Hamiltonian systems
title_sort Transitions between periodic orbits and control of chaos assisted by an external force in Hamiltonian systems
author Angelo,R.M.
author_facet Angelo,R.M.
Furuya,K.
Aguiar,M.A.M. de
author_role author
author2 Furuya,K.
Aguiar,M.A.M. de
author2_role author
author
dc.contributor.author.fl_str_mv Angelo,R.M.
Furuya,K.
Aguiar,M.A.M. de
description We investigate the possibility of inducing transitions between periodic orbits in two-dimensional Hamiltonian systems by means of a time-localized external perturbation. We show that the amplitude of the perturbation can be approximately calculated in the limit of a delta-type force in terms of the initial and final periodic orbits. For a specific Hamiltonian, we show several numerical examples where the external perturbation, varied from delta-type to gaussian, allows transitions between specifically chosen members of families of periodic orbits. The same mechanism is then applied to move aperiodic chaotic orbits into periodic ones, presenting a new way to control chaotic behavior in Hamiltonian systems.
publishDate 1998
dc.date.none.fl_str_mv 1998-09-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97331998000300005
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97331998000300005
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0103-97331998000300005
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Física
publisher.none.fl_str_mv Sociedade Brasileira de Física
dc.source.none.fl_str_mv Brazilian Journal of Physics v.28 n.3 1998
reponame:Brazilian Journal of Physics
instname:Sociedade Brasileira de Física (SBF)
instacron:SBF
instname_str Sociedade Brasileira de Física (SBF)
instacron_str SBF
institution SBF
reponame_str Brazilian Journal of Physics
collection Brazilian Journal of Physics
repository.name.fl_str_mv Brazilian Journal of Physics - Sociedade Brasileira de Física (SBF)
repository.mail.fl_str_mv sbfisica@sbfisica.org.br||sbfisica@sbfisica.org.br
_version_ 1754734858448404480