A nonextensive method for spectroscopic data analysis with artificial neural networks

Detalhes bibliográficos
Autor(a) principal: Kalamatianos,Dimitrios
Data de Publicação: 2009
Outros Autores: Anastasiadis,Aristoklis D., Liatsis,Panos
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Brazilian Journal of Physics
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332009000400026
Resumo: In this paper we apply an evolving stochastic method to construct simple and effective Artificial Neural Networks, based on the theory of Tsallis statistical mechanics. Our aim is to establish an automatic process for building a smaller network with high classification performance. We aim to assess the utility of the method based on statistical mechanics for the estimation of transparent coating material on security papers and cholesterol levels in blood samples. Our experimental study verifies that there are indeed improvements in the overall performance in terms of classification success and at the size of network compared to other efficient backpropagation learning methods.
id SBF-2_d21702d4fdd5f75a49a6ceb458d73b07
oai_identifier_str oai:scielo:S0103-97332009000400026
network_acronym_str SBF-2
network_name_str Brazilian Journal of Physics
repository_id_str
spelling A nonextensive method for spectroscopic data analysis with artificial neural networksNonextensive statistical mechanicsNeural networksPattern classificationSpectroscopyIn this paper we apply an evolving stochastic method to construct simple and effective Artificial Neural Networks, based on the theory of Tsallis statistical mechanics. Our aim is to establish an automatic process for building a smaller network with high classification performance. We aim to assess the utility of the method based on statistical mechanics for the estimation of transparent coating material on security papers and cholesterol levels in blood samples. Our experimental study verifies that there are indeed improvements in the overall performance in terms of classification success and at the size of network compared to other efficient backpropagation learning methods.Sociedade Brasileira de Física2009-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332009000400026Brazilian Journal of Physics v.39 n.2a 2009reponame:Brazilian Journal of Physicsinstname:Sociedade Brasileira de Física (SBF)instacron:SBF10.1590/S0103-97332009000400026info:eu-repo/semantics/openAccessKalamatianos,DimitriosAnastasiadis,Aristoklis D.Liatsis,Panoseng2009-09-10T00:00:00Zoai:scielo:S0103-97332009000400026Revistahttp://www.sbfisica.org.br/v1/home/index.php/pt/ONGhttps://old.scielo.br/oai/scielo-oai.phpsbfisica@sbfisica.org.br||sbfisica@sbfisica.org.br1678-44480103-9733opendoar:2009-09-10T00:00Brazilian Journal of Physics - Sociedade Brasileira de Física (SBF)false
dc.title.none.fl_str_mv A nonextensive method for spectroscopic data analysis with artificial neural networks
title A nonextensive method for spectroscopic data analysis with artificial neural networks
spellingShingle A nonextensive method for spectroscopic data analysis with artificial neural networks
Kalamatianos,Dimitrios
Nonextensive statistical mechanics
Neural networks
Pattern classification
Spectroscopy
title_short A nonextensive method for spectroscopic data analysis with artificial neural networks
title_full A nonextensive method for spectroscopic data analysis with artificial neural networks
title_fullStr A nonextensive method for spectroscopic data analysis with artificial neural networks
title_full_unstemmed A nonextensive method for spectroscopic data analysis with artificial neural networks
title_sort A nonextensive method for spectroscopic data analysis with artificial neural networks
author Kalamatianos,Dimitrios
author_facet Kalamatianos,Dimitrios
Anastasiadis,Aristoklis D.
Liatsis,Panos
author_role author
author2 Anastasiadis,Aristoklis D.
Liatsis,Panos
author2_role author
author
dc.contributor.author.fl_str_mv Kalamatianos,Dimitrios
Anastasiadis,Aristoklis D.
Liatsis,Panos
dc.subject.por.fl_str_mv Nonextensive statistical mechanics
Neural networks
Pattern classification
Spectroscopy
topic Nonextensive statistical mechanics
Neural networks
Pattern classification
Spectroscopy
description In this paper we apply an evolving stochastic method to construct simple and effective Artificial Neural Networks, based on the theory of Tsallis statistical mechanics. Our aim is to establish an automatic process for building a smaller network with high classification performance. We aim to assess the utility of the method based on statistical mechanics for the estimation of transparent coating material on security papers and cholesterol levels in blood samples. Our experimental study verifies that there are indeed improvements in the overall performance in terms of classification success and at the size of network compared to other efficient backpropagation learning methods.
publishDate 2009
dc.date.none.fl_str_mv 2009-08-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332009000400026
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332009000400026
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0103-97332009000400026
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Física
publisher.none.fl_str_mv Sociedade Brasileira de Física
dc.source.none.fl_str_mv Brazilian Journal of Physics v.39 n.2a 2009
reponame:Brazilian Journal of Physics
instname:Sociedade Brasileira de Física (SBF)
instacron:SBF
instname_str Sociedade Brasileira de Física (SBF)
instacron_str SBF
institution SBF
reponame_str Brazilian Journal of Physics
collection Brazilian Journal of Physics
repository.name.fl_str_mv Brazilian Journal of Physics - Sociedade Brasileira de Física (SBF)
repository.mail.fl_str_mv sbfisica@sbfisica.org.br||sbfisica@sbfisica.org.br
_version_ 1754734865186553856