A nonextensive method for spectroscopic data analysis with artificial neural networks
Autor(a) principal: | |
---|---|
Data de Publicação: | 2009 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Brazilian Journal of Physics |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332009000400026 |
Resumo: | In this paper we apply an evolving stochastic method to construct simple and effective Artificial Neural Networks, based on the theory of Tsallis statistical mechanics. Our aim is to establish an automatic process for building a smaller network with high classification performance. We aim to assess the utility of the method based on statistical mechanics for the estimation of transparent coating material on security papers and cholesterol levels in blood samples. Our experimental study verifies that there are indeed improvements in the overall performance in terms of classification success and at the size of network compared to other efficient backpropagation learning methods. |
id |
SBF-2_d21702d4fdd5f75a49a6ceb458d73b07 |
---|---|
oai_identifier_str |
oai:scielo:S0103-97332009000400026 |
network_acronym_str |
SBF-2 |
network_name_str |
Brazilian Journal of Physics |
repository_id_str |
|
spelling |
A nonextensive method for spectroscopic data analysis with artificial neural networksNonextensive statistical mechanicsNeural networksPattern classificationSpectroscopyIn this paper we apply an evolving stochastic method to construct simple and effective Artificial Neural Networks, based on the theory of Tsallis statistical mechanics. Our aim is to establish an automatic process for building a smaller network with high classification performance. We aim to assess the utility of the method based on statistical mechanics for the estimation of transparent coating material on security papers and cholesterol levels in blood samples. Our experimental study verifies that there are indeed improvements in the overall performance in terms of classification success and at the size of network compared to other efficient backpropagation learning methods.Sociedade Brasileira de Física2009-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332009000400026Brazilian Journal of Physics v.39 n.2a 2009reponame:Brazilian Journal of Physicsinstname:Sociedade Brasileira de Física (SBF)instacron:SBF10.1590/S0103-97332009000400026info:eu-repo/semantics/openAccessKalamatianos,DimitriosAnastasiadis,Aristoklis D.Liatsis,Panoseng2009-09-10T00:00:00Zoai:scielo:S0103-97332009000400026Revistahttp://www.sbfisica.org.br/v1/home/index.php/pt/ONGhttps://old.scielo.br/oai/scielo-oai.phpsbfisica@sbfisica.org.br||sbfisica@sbfisica.org.br1678-44480103-9733opendoar:2009-09-10T00:00Brazilian Journal of Physics - Sociedade Brasileira de Física (SBF)false |
dc.title.none.fl_str_mv |
A nonextensive method for spectroscopic data analysis with artificial neural networks |
title |
A nonextensive method for spectroscopic data analysis with artificial neural networks |
spellingShingle |
A nonextensive method for spectroscopic data analysis with artificial neural networks Kalamatianos,Dimitrios Nonextensive statistical mechanics Neural networks Pattern classification Spectroscopy |
title_short |
A nonextensive method for spectroscopic data analysis with artificial neural networks |
title_full |
A nonextensive method for spectroscopic data analysis with artificial neural networks |
title_fullStr |
A nonextensive method for spectroscopic data analysis with artificial neural networks |
title_full_unstemmed |
A nonextensive method for spectroscopic data analysis with artificial neural networks |
title_sort |
A nonextensive method for spectroscopic data analysis with artificial neural networks |
author |
Kalamatianos,Dimitrios |
author_facet |
Kalamatianos,Dimitrios Anastasiadis,Aristoklis D. Liatsis,Panos |
author_role |
author |
author2 |
Anastasiadis,Aristoklis D. Liatsis,Panos |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Kalamatianos,Dimitrios Anastasiadis,Aristoklis D. Liatsis,Panos |
dc.subject.por.fl_str_mv |
Nonextensive statistical mechanics Neural networks Pattern classification Spectroscopy |
topic |
Nonextensive statistical mechanics Neural networks Pattern classification Spectroscopy |
description |
In this paper we apply an evolving stochastic method to construct simple and effective Artificial Neural Networks, based on the theory of Tsallis statistical mechanics. Our aim is to establish an automatic process for building a smaller network with high classification performance. We aim to assess the utility of the method based on statistical mechanics for the estimation of transparent coating material on security papers and cholesterol levels in blood samples. Our experimental study verifies that there are indeed improvements in the overall performance in terms of classification success and at the size of network compared to other efficient backpropagation learning methods. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-08-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332009000400026 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332009000400026 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0103-97332009000400026 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Física |
publisher.none.fl_str_mv |
Sociedade Brasileira de Física |
dc.source.none.fl_str_mv |
Brazilian Journal of Physics v.39 n.2a 2009 reponame:Brazilian Journal of Physics instname:Sociedade Brasileira de Física (SBF) instacron:SBF |
instname_str |
Sociedade Brasileira de Física (SBF) |
instacron_str |
SBF |
institution |
SBF |
reponame_str |
Brazilian Journal of Physics |
collection |
Brazilian Journal of Physics |
repository.name.fl_str_mv |
Brazilian Journal of Physics - Sociedade Brasileira de Física (SBF) |
repository.mail.fl_str_mv |
sbfisica@sbfisica.org.br||sbfisica@sbfisica.org.br |
_version_ |
1754734865186553856 |