A multiparameter chaos control method applied to maps
Autor(a) principal: | |
---|---|
Data de Publicação: | 2008 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Brazilian Journal of Physics |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332008000500002 |
Resumo: | Chaos is a kind of nonlinear system response that has a dense set of unstable periodic orbits (UPOs) embedded in a chaotic attractor. The idea of the chaos control is to explore the UPO stabilization obtaining dynamical systems that may quickly react to some new situation, changing conditions and their response. The OGY (Ott-Grebogi-Yorke) method achieves system stabilization by using small perturbations promoted in the neighborhood of the desired orbit when the trajectory crosses a specific surface, such as a Poincaré section. This contribution proposes a multiparameter (MP) method based on OGY approach in order to control chaotic behavior using different control parameters. As an application of the proposed multiparameter general formulation it is presented an uncoupled approach where the control parameters do not influence the system dynamics when they are not active. This method is applied to control chaos in maps using two control parameters. The two-dimensional Hénon and Ikeda maps are of concern. Results show that the proposed procedure can be a good alternative for chaos control since it provides a more effective UPO stabilization than the classical single-parameter OGY approach. |
id |
SBF-2_dd2d0d58709709b36bbcf0296fc35307 |
---|---|
oai_identifier_str |
oai:scielo:S0103-97332008000500002 |
network_acronym_str |
SBF-2 |
network_name_str |
Brazilian Journal of Physics |
repository_id_str |
|
spelling |
A multiparameter chaos control method applied to mapsChaosControlNonlinear dynamicsHénon mapIkeda mapOGY methodChaos is a kind of nonlinear system response that has a dense set of unstable periodic orbits (UPOs) embedded in a chaotic attractor. The idea of the chaos control is to explore the UPO stabilization obtaining dynamical systems that may quickly react to some new situation, changing conditions and their response. The OGY (Ott-Grebogi-Yorke) method achieves system stabilization by using small perturbations promoted in the neighborhood of the desired orbit when the trajectory crosses a specific surface, such as a Poincaré section. This contribution proposes a multiparameter (MP) method based on OGY approach in order to control chaotic behavior using different control parameters. As an application of the proposed multiparameter general formulation it is presented an uncoupled approach where the control parameters do not influence the system dynamics when they are not active. This method is applied to control chaos in maps using two control parameters. The two-dimensional Hénon and Ikeda maps are of concern. Results show that the proposed procedure can be a good alternative for chaos control since it provides a more effective UPO stabilization than the classical single-parameter OGY approach.Sociedade Brasileira de Física2008-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332008000500002Brazilian Journal of Physics v.38 n.4 2008reponame:Brazilian Journal of Physicsinstname:Sociedade Brasileira de Física (SBF)instacron:SBF10.1590/S0103-97332008000500002info:eu-repo/semantics/openAccessPaula,Aline Souza deSavi,Marcelo Amorimeng2009-01-19T00:00:00Zoai:scielo:S0103-97332008000500002Revistahttp://www.sbfisica.org.br/v1/home/index.php/pt/ONGhttps://old.scielo.br/oai/scielo-oai.phpsbfisica@sbfisica.org.br||sbfisica@sbfisica.org.br1678-44480103-9733opendoar:2009-01-19T00:00Brazilian Journal of Physics - Sociedade Brasileira de Física (SBF)false |
dc.title.none.fl_str_mv |
A multiparameter chaos control method applied to maps |
title |
A multiparameter chaos control method applied to maps |
spellingShingle |
A multiparameter chaos control method applied to maps Paula,Aline Souza de Chaos Control Nonlinear dynamics Hénon map Ikeda map OGY method |
title_short |
A multiparameter chaos control method applied to maps |
title_full |
A multiparameter chaos control method applied to maps |
title_fullStr |
A multiparameter chaos control method applied to maps |
title_full_unstemmed |
A multiparameter chaos control method applied to maps |
title_sort |
A multiparameter chaos control method applied to maps |
author |
Paula,Aline Souza de |
author_facet |
Paula,Aline Souza de Savi,Marcelo Amorim |
author_role |
author |
author2 |
Savi,Marcelo Amorim |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Paula,Aline Souza de Savi,Marcelo Amorim |
dc.subject.por.fl_str_mv |
Chaos Control Nonlinear dynamics Hénon map Ikeda map OGY method |
topic |
Chaos Control Nonlinear dynamics Hénon map Ikeda map OGY method |
description |
Chaos is a kind of nonlinear system response that has a dense set of unstable periodic orbits (UPOs) embedded in a chaotic attractor. The idea of the chaos control is to explore the UPO stabilization obtaining dynamical systems that may quickly react to some new situation, changing conditions and their response. The OGY (Ott-Grebogi-Yorke) method achieves system stabilization by using small perturbations promoted in the neighborhood of the desired orbit when the trajectory crosses a specific surface, such as a Poincaré section. This contribution proposes a multiparameter (MP) method based on OGY approach in order to control chaotic behavior using different control parameters. As an application of the proposed multiparameter general formulation it is presented an uncoupled approach where the control parameters do not influence the system dynamics when they are not active. This method is applied to control chaos in maps using two control parameters. The two-dimensional Hénon and Ikeda maps are of concern. Results show that the proposed procedure can be a good alternative for chaos control since it provides a more effective UPO stabilization than the classical single-parameter OGY approach. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-12-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332008000500002 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332008000500002 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0103-97332008000500002 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Física |
publisher.none.fl_str_mv |
Sociedade Brasileira de Física |
dc.source.none.fl_str_mv |
Brazilian Journal of Physics v.38 n.4 2008 reponame:Brazilian Journal of Physics instname:Sociedade Brasileira de Física (SBF) instacron:SBF |
instname_str |
Sociedade Brasileira de Física (SBF) |
instacron_str |
SBF |
institution |
SBF |
reponame_str |
Brazilian Journal of Physics |
collection |
Brazilian Journal of Physics |
repository.name.fl_str_mv |
Brazilian Journal of Physics - Sociedade Brasileira de Física (SBF) |
repository.mail.fl_str_mv |
sbfisica@sbfisica.org.br||sbfisica@sbfisica.org.br |
_version_ |
1754734864749297664 |