Non-relativistic propagators via Schwinger's method

Detalhes bibliográficos
Autor(a) principal: Aragão,A.
Data de Publicação: 2007
Outros Autores: Boschi-Filho,H., Farina,C., Barone,F. A.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Brazilian Journal of Physics
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332007000800011
Resumo: In order to popularize the so called Schwinger's method we reconsider the Feynman propagator of two non-relativistic systems: a charged particle in a uniform magnetic field and a charged harmonic oscillator in a uniform magnetic field. Instead of solving the Heisenberg equations for the position and the canonical momentum operators, R and P, we apply this method by solving the Heisenberg equations for the gauge invariant operators R and pi = P-eA, the latter being the mechanical momentum operator. In our procedure we avoid fixing the gauge from the beginning and the result thus obtained shows explicitly the gauge dependence of the Feynman propagator.
id SBF-2_e38092dfcc92349958b6a3b3df5cbb1c
oai_identifier_str oai:scielo:S0103-97332007000800011
network_acronym_str SBF-2
network_name_str Brazilian Journal of Physics
repository_id_str
spelling Non-relativistic propagators via Schwinger's methodSchwinger’s methodFeynman PropagatorMagnetic FieldHarmonic OscillatorIn order to popularize the so called Schwinger's method we reconsider the Feynman propagator of two non-relativistic systems: a charged particle in a uniform magnetic field and a charged harmonic oscillator in a uniform magnetic field. Instead of solving the Heisenberg equations for the position and the canonical momentum operators, R and P, we apply this method by solving the Heisenberg equations for the gauge invariant operators R and pi = P-eA, the latter being the mechanical momentum operator. In our procedure we avoid fixing the gauge from the beginning and the result thus obtained shows explicitly the gauge dependence of the Feynman propagator.Sociedade Brasileira de Física2007-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332007000800011Brazilian Journal of Physics v.37 n.4 2007reponame:Brazilian Journal of Physicsinstname:Sociedade Brasileira de Física (SBF)instacron:SBF10.1590/S0103-97332007000800011info:eu-repo/semantics/openAccessAragão,A.Boschi-Filho,H.Farina,C.Barone,F. A.eng2008-01-28T00:00:00Zoai:scielo:S0103-97332007000800011Revistahttp://www.sbfisica.org.br/v1/home/index.php/pt/ONGhttps://old.scielo.br/oai/scielo-oai.phpsbfisica@sbfisica.org.br||sbfisica@sbfisica.org.br1678-44480103-9733opendoar:2008-01-28T00:00Brazilian Journal of Physics - Sociedade Brasileira de Física (SBF)false
dc.title.none.fl_str_mv Non-relativistic propagators via Schwinger's method
title Non-relativistic propagators via Schwinger's method
spellingShingle Non-relativistic propagators via Schwinger's method
Aragão,A.
Schwinger’s method
Feynman Propagator
Magnetic Field
Harmonic Oscillator
title_short Non-relativistic propagators via Schwinger's method
title_full Non-relativistic propagators via Schwinger's method
title_fullStr Non-relativistic propagators via Schwinger's method
title_full_unstemmed Non-relativistic propagators via Schwinger's method
title_sort Non-relativistic propagators via Schwinger's method
author Aragão,A.
author_facet Aragão,A.
Boschi-Filho,H.
Farina,C.
Barone,F. A.
author_role author
author2 Boschi-Filho,H.
Farina,C.
Barone,F. A.
author2_role author
author
author
dc.contributor.author.fl_str_mv Aragão,A.
Boschi-Filho,H.
Farina,C.
Barone,F. A.
dc.subject.por.fl_str_mv Schwinger’s method
Feynman Propagator
Magnetic Field
Harmonic Oscillator
topic Schwinger’s method
Feynman Propagator
Magnetic Field
Harmonic Oscillator
description In order to popularize the so called Schwinger's method we reconsider the Feynman propagator of two non-relativistic systems: a charged particle in a uniform magnetic field and a charged harmonic oscillator in a uniform magnetic field. Instead of solving the Heisenberg equations for the position and the canonical momentum operators, R and P, we apply this method by solving the Heisenberg equations for the gauge invariant operators R and pi = P-eA, the latter being the mechanical momentum operator. In our procedure we avoid fixing the gauge from the beginning and the result thus obtained shows explicitly the gauge dependence of the Feynman propagator.
publishDate 2007
dc.date.none.fl_str_mv 2007-12-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332007000800011
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332007000800011
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0103-97332007000800011
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Física
publisher.none.fl_str_mv Sociedade Brasileira de Física
dc.source.none.fl_str_mv Brazilian Journal of Physics v.37 n.4 2007
reponame:Brazilian Journal of Physics
instname:Sociedade Brasileira de Física (SBF)
instacron:SBF
instname_str Sociedade Brasileira de Física (SBF)
instacron_str SBF
institution SBF
reponame_str Brazilian Journal of Physics
collection Brazilian Journal of Physics
repository.name.fl_str_mv Brazilian Journal of Physics - Sociedade Brasileira de Física (SBF)
repository.mail.fl_str_mv sbfisica@sbfisica.org.br||sbfisica@sbfisica.org.br
_version_ 1754734864401170432