Analysis of concrete material through gamma ray computerized tomography

Detalhes bibliográficos
Autor(a) principal: Oliveira Jr.,J. M. de
Data de Publicação: 2004
Outros Autores: Martins,A. C. G., DE Milito,J. A.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Brazilian Journal of Physics
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332004000500086
Resumo: Computerized Tomography (CT) refers to the cross sectional imaging of an object from both transmission or reflection data collected by illuminating the object from many different directions. The most important contribution of CT is to greatly improve abilities to distinguish regions with different gamma ray transmittance and to separate over-lying structures. The mathematical problem of the CT imaging is that of estimating an image from its projections. These projections can represent, for example, the linear attenuation coefficient of gamma-rays along the path of the ray. In this work we will present some new results obtained by using tomographic techniques to analyze column samples of concrete to check the distribution of various materials and structural problems. These concrete samples were made using different proportions of stone, sand and cement. Another set of samples with different proportions of sand and cement were also used to verify the outcome from the CT analysis and the differences between them. Those samples were prepared at the Material Laboratory of Faculdade de Engenharia de Sorocaba, following the same procedures used in real case of concrete tests. The projections used in this work was obtained by Mini Computerized Tomograph of Uniso (MTCU), located at the Experimental Nuclear Physics Laboratory at University of Sorocaba. This tomograph operates with a gamma ray source of 241Am (photons of 60 keV and 100 mCi of intensity) and a NaI(Tl) solid state detector. The system features translation and rotation scanning modes, a 100 mm effective field of view, and 1 mm spatial resolution. The image reconstruction problem is solved using Discrete Filtered Backprojection (FBP).
id SBF-2_efc1d219601d23d6174f14998c375968
oai_identifier_str oai:scielo:S0103-97332004000500086
network_acronym_str SBF-2
network_name_str Brazilian Journal of Physics
repository_id_str
spelling Analysis of concrete material through gamma ray computerized tomographyComputerized Tomography (CT) refers to the cross sectional imaging of an object from both transmission or reflection data collected by illuminating the object from many different directions. The most important contribution of CT is to greatly improve abilities to distinguish regions with different gamma ray transmittance and to separate over-lying structures. The mathematical problem of the CT imaging is that of estimating an image from its projections. These projections can represent, for example, the linear attenuation coefficient of gamma-rays along the path of the ray. In this work we will present some new results obtained by using tomographic techniques to analyze column samples of concrete to check the distribution of various materials and structural problems. These concrete samples were made using different proportions of stone, sand and cement. Another set of samples with different proportions of sand and cement were also used to verify the outcome from the CT analysis and the differences between them. Those samples were prepared at the Material Laboratory of Faculdade de Engenharia de Sorocaba, following the same procedures used in real case of concrete tests. The projections used in this work was obtained by Mini Computerized Tomograph of Uniso (MTCU), located at the Experimental Nuclear Physics Laboratory at University of Sorocaba. This tomograph operates with a gamma ray source of 241Am (photons of 60 keV and 100 mCi of intensity) and a NaI(Tl) solid state detector. The system features translation and rotation scanning modes, a 100 mm effective field of view, and 1 mm spatial resolution. The image reconstruction problem is solved using Discrete Filtered Backprojection (FBP).Sociedade Brasileira de Física2004-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332004000500086Brazilian Journal of Physics v.34 n.3a 2004reponame:Brazilian Journal of Physicsinstname:Sociedade Brasileira de Física (SBF)instacron:SBF10.1590/S0103-97332004000500086info:eu-repo/semantics/openAccessOliveira Jr.,J. M. deMartins,A. C. G.DE Milito,J. A.eng2004-10-26T00:00:00Zoai:scielo:S0103-97332004000500086Revistahttp://www.sbfisica.org.br/v1/home/index.php/pt/ONGhttps://old.scielo.br/oai/scielo-oai.phpsbfisica@sbfisica.org.br||sbfisica@sbfisica.org.br1678-44480103-9733opendoar:2004-10-26T00:00Brazilian Journal of Physics - Sociedade Brasileira de Física (SBF)false
dc.title.none.fl_str_mv Analysis of concrete material through gamma ray computerized tomography
title Analysis of concrete material through gamma ray computerized tomography
spellingShingle Analysis of concrete material through gamma ray computerized tomography
Oliveira Jr.,J. M. de
title_short Analysis of concrete material through gamma ray computerized tomography
title_full Analysis of concrete material through gamma ray computerized tomography
title_fullStr Analysis of concrete material through gamma ray computerized tomography
title_full_unstemmed Analysis of concrete material through gamma ray computerized tomography
title_sort Analysis of concrete material through gamma ray computerized tomography
author Oliveira Jr.,J. M. de
author_facet Oliveira Jr.,J. M. de
Martins,A. C. G.
DE Milito,J. A.
author_role author
author2 Martins,A. C. G.
DE Milito,J. A.
author2_role author
author
dc.contributor.author.fl_str_mv Oliveira Jr.,J. M. de
Martins,A. C. G.
DE Milito,J. A.
description Computerized Tomography (CT) refers to the cross sectional imaging of an object from both transmission or reflection data collected by illuminating the object from many different directions. The most important contribution of CT is to greatly improve abilities to distinguish regions with different gamma ray transmittance and to separate over-lying structures. The mathematical problem of the CT imaging is that of estimating an image from its projections. These projections can represent, for example, the linear attenuation coefficient of gamma-rays along the path of the ray. In this work we will present some new results obtained by using tomographic techniques to analyze column samples of concrete to check the distribution of various materials and structural problems. These concrete samples were made using different proportions of stone, sand and cement. Another set of samples with different proportions of sand and cement were also used to verify the outcome from the CT analysis and the differences between them. Those samples were prepared at the Material Laboratory of Faculdade de Engenharia de Sorocaba, following the same procedures used in real case of concrete tests. The projections used in this work was obtained by Mini Computerized Tomograph of Uniso (MTCU), located at the Experimental Nuclear Physics Laboratory at University of Sorocaba. This tomograph operates with a gamma ray source of 241Am (photons of 60 keV and 100 mCi of intensity) and a NaI(Tl) solid state detector. The system features translation and rotation scanning modes, a 100 mm effective field of view, and 1 mm spatial resolution. The image reconstruction problem is solved using Discrete Filtered Backprojection (FBP).
publishDate 2004
dc.date.none.fl_str_mv 2004-09-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332004000500086
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332004000500086
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0103-97332004000500086
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Física
publisher.none.fl_str_mv Sociedade Brasileira de Física
dc.source.none.fl_str_mv Brazilian Journal of Physics v.34 n.3a 2004
reponame:Brazilian Journal of Physics
instname:Sociedade Brasileira de Física (SBF)
instacron:SBF
instname_str Sociedade Brasileira de Física (SBF)
instacron_str SBF
institution SBF
reponame_str Brazilian Journal of Physics
collection Brazilian Journal of Physics
repository.name.fl_str_mv Brazilian Journal of Physics - Sociedade Brasileira de Física (SBF)
repository.mail.fl_str_mv sbfisica@sbfisica.org.br||sbfisica@sbfisica.org.br
_version_ 1754734861527023616