Condensed Matter Physics as a laboratory for gravitation and Cosmology

Detalhes bibliográficos
Autor(a) principal: Moraes,Fernando
Data de Publicação: 2000
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Brazilian Journal of Physics
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332000000200011
Resumo: The geometric language of General Relativity is not normally related to Condensed Matter (CM) Physics since it is the electromagnetic and not the gravitational interaction that dominates the physics of CM systems. What points in common would then CMP have with Cosmology and the dynamics of objects in a gravitational field? There is at least one that is very important: topological defects formed in symmetry breaking phase transitions. To explore the similarities and differences here has been a very fruitful experience for both sides. On one hand, topological defects in solids started to be described by a gravity-like theory including torsion and, on the other hand, experiments have been proposed and performed in CM systems with the purpose of testing cosmological theories. Some examples are: 1) Landau levels and the Aharonov-Bohm effect of electrons moving in a crystal containing a screw dislocation can be described in a simple way in a geometric formalism; 2) closed timelike curves have been proposed in the vicinity of vortices in superfluid Helium; 3) Kibble mechanism, for the generation of topological defects, has been experimentally verified in liquid crystals. In summary, Condensed Matter Physics with its rich diversity of systems and phenomena and of relatively easy access to experiments, appears as a laboratory for testing hypotheses of gravitational theory and cosmology involving topological defects. In this work I summarize recent results in this interface area focusing mainly in the results obtained by our research group.
id SBF-2_f325085a1fc7a842be4211bb4900591e
oai_identifier_str oai:scielo:S0103-97332000000200011
network_acronym_str SBF-2
network_name_str Brazilian Journal of Physics
repository_id_str
spelling Condensed Matter Physics as a laboratory for gravitation and CosmologyThe geometric language of General Relativity is not normally related to Condensed Matter (CM) Physics since it is the electromagnetic and not the gravitational interaction that dominates the physics of CM systems. What points in common would then CMP have with Cosmology and the dynamics of objects in a gravitational field? There is at least one that is very important: topological defects formed in symmetry breaking phase transitions. To explore the similarities and differences here has been a very fruitful experience for both sides. On one hand, topological defects in solids started to be described by a gravity-like theory including torsion and, on the other hand, experiments have been proposed and performed in CM systems with the purpose of testing cosmological theories. Some examples are: 1) Landau levels and the Aharonov-Bohm effect of electrons moving in a crystal containing a screw dislocation can be described in a simple way in a geometric formalism; 2) closed timelike curves have been proposed in the vicinity of vortices in superfluid Helium; 3) Kibble mechanism, for the generation of topological defects, has been experimentally verified in liquid crystals. In summary, Condensed Matter Physics with its rich diversity of systems and phenomena and of relatively easy access to experiments, appears as a laboratory for testing hypotheses of gravitational theory and cosmology involving topological defects. In this work I summarize recent results in this interface area focusing mainly in the results obtained by our research group.Sociedade Brasileira de Física2000-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332000000200011Brazilian Journal of Physics v.30 n.2 2000reponame:Brazilian Journal of Physicsinstname:Sociedade Brasileira de Física (SBF)instacron:SBF10.1590/S0103-97332000000200011info:eu-repo/semantics/openAccessMoraes,Fernandoeng2002-01-07T00:00:00Zoai:scielo:S0103-97332000000200011Revistahttp://www.sbfisica.org.br/v1/home/index.php/pt/ONGhttps://old.scielo.br/oai/scielo-oai.phpsbfisica@sbfisica.org.br||sbfisica@sbfisica.org.br1678-44480103-9733opendoar:2002-01-07T00:00Brazilian Journal of Physics - Sociedade Brasileira de Física (SBF)false
dc.title.none.fl_str_mv Condensed Matter Physics as a laboratory for gravitation and Cosmology
title Condensed Matter Physics as a laboratory for gravitation and Cosmology
spellingShingle Condensed Matter Physics as a laboratory for gravitation and Cosmology
Moraes,Fernando
title_short Condensed Matter Physics as a laboratory for gravitation and Cosmology
title_full Condensed Matter Physics as a laboratory for gravitation and Cosmology
title_fullStr Condensed Matter Physics as a laboratory for gravitation and Cosmology
title_full_unstemmed Condensed Matter Physics as a laboratory for gravitation and Cosmology
title_sort Condensed Matter Physics as a laboratory for gravitation and Cosmology
author Moraes,Fernando
author_facet Moraes,Fernando
author_role author
dc.contributor.author.fl_str_mv Moraes,Fernando
description The geometric language of General Relativity is not normally related to Condensed Matter (CM) Physics since it is the electromagnetic and not the gravitational interaction that dominates the physics of CM systems. What points in common would then CMP have with Cosmology and the dynamics of objects in a gravitational field? There is at least one that is very important: topological defects formed in symmetry breaking phase transitions. To explore the similarities and differences here has been a very fruitful experience for both sides. On one hand, topological defects in solids started to be described by a gravity-like theory including torsion and, on the other hand, experiments have been proposed and performed in CM systems with the purpose of testing cosmological theories. Some examples are: 1) Landau levels and the Aharonov-Bohm effect of electrons moving in a crystal containing a screw dislocation can be described in a simple way in a geometric formalism; 2) closed timelike curves have been proposed in the vicinity of vortices in superfluid Helium; 3) Kibble mechanism, for the generation of topological defects, has been experimentally verified in liquid crystals. In summary, Condensed Matter Physics with its rich diversity of systems and phenomena and of relatively easy access to experiments, appears as a laboratory for testing hypotheses of gravitational theory and cosmology involving topological defects. In this work I summarize recent results in this interface area focusing mainly in the results obtained by our research group.
publishDate 2000
dc.date.none.fl_str_mv 2000-06-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332000000200011
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332000000200011
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0103-97332000000200011
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Física
publisher.none.fl_str_mv Sociedade Brasileira de Física
dc.source.none.fl_str_mv Brazilian Journal of Physics v.30 n.2 2000
reponame:Brazilian Journal of Physics
instname:Sociedade Brasileira de Física (SBF)
instacron:SBF
instname_str Sociedade Brasileira de Física (SBF)
instacron_str SBF
institution SBF
reponame_str Brazilian Journal of Physics
collection Brazilian Journal of Physics
repository.name.fl_str_mv Brazilian Journal of Physics - Sociedade Brasileira de Física (SBF)
repository.mail.fl_str_mv sbfisica@sbfisica.org.br||sbfisica@sbfisica.org.br
_version_ 1754734859085938688