Effects of torsion on electromagnetic fields
Autor(a) principal: | |
---|---|
Data de Publicação: | 2005 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Brazilian Journal of Physics |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332005000400009 |
Resumo: | In this work, we investigate the effects of torsion on electromagnetic fields. As a model spacetime, endowed with both curvature and torsion, we choose a generalization of the cosmic string, the cosmic dislocation. Maxwell's equations in the spacetime of a cosmic dislocation are then solved, considering both the case of a static, uniform, charge distribution along the string, and the case of a constant current flowing through the string. We find that the torsion associated to the defect affects only the magnetic field whereas curvature affects both electric and magnetic fields. Moreover, the magnetic field is found to spiral up around the defect axis. |
id |
SBF-2_ff2934d28db497e60f53f998a0f9ea8b |
---|---|
oai_identifier_str |
oai:scielo:S0103-97332005000400009 |
network_acronym_str |
SBF-2 |
network_name_str |
Brazilian Journal of Physics |
repository_id_str |
|
spelling |
Effects of torsion on electromagnetic fieldsIn this work, we investigate the effects of torsion on electromagnetic fields. As a model spacetime, endowed with both curvature and torsion, we choose a generalization of the cosmic string, the cosmic dislocation. Maxwell's equations in the spacetime of a cosmic dislocation are then solved, considering both the case of a static, uniform, charge distribution along the string, and the case of a constant current flowing through the string. We find that the torsion associated to the defect affects only the magnetic field whereas curvature affects both electric and magnetic fields. Moreover, the magnetic field is found to spiral up around the defect axis.Sociedade Brasileira de Física2005-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332005000400009Brazilian Journal of Physics v.35 n.3a 2005reponame:Brazilian Journal of Physicsinstname:Sociedade Brasileira de Física (SBF)instacron:SBF10.1590/S0103-97332005000400009info:eu-repo/semantics/openAccessDias,LaércioMoraes,Fernandoeng2005-10-13T00:00:00Zoai:scielo:S0103-97332005000400009Revistahttp://www.sbfisica.org.br/v1/home/index.php/pt/ONGhttps://old.scielo.br/oai/scielo-oai.phpsbfisica@sbfisica.org.br||sbfisica@sbfisica.org.br1678-44480103-9733opendoar:2005-10-13T00:00Brazilian Journal of Physics - Sociedade Brasileira de Física (SBF)false |
dc.title.none.fl_str_mv |
Effects of torsion on electromagnetic fields |
title |
Effects of torsion on electromagnetic fields |
spellingShingle |
Effects of torsion on electromagnetic fields Dias,Laércio |
title_short |
Effects of torsion on electromagnetic fields |
title_full |
Effects of torsion on electromagnetic fields |
title_fullStr |
Effects of torsion on electromagnetic fields |
title_full_unstemmed |
Effects of torsion on electromagnetic fields |
title_sort |
Effects of torsion on electromagnetic fields |
author |
Dias,Laércio |
author_facet |
Dias,Laércio Moraes,Fernando |
author_role |
author |
author2 |
Moraes,Fernando |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Dias,Laércio Moraes,Fernando |
description |
In this work, we investigate the effects of torsion on electromagnetic fields. As a model spacetime, endowed with both curvature and torsion, we choose a generalization of the cosmic string, the cosmic dislocation. Maxwell's equations in the spacetime of a cosmic dislocation are then solved, considering both the case of a static, uniform, charge distribution along the string, and the case of a constant current flowing through the string. We find that the torsion associated to the defect affects only the magnetic field whereas curvature affects both electric and magnetic fields. Moreover, the magnetic field is found to spiral up around the defect axis. |
publishDate |
2005 |
dc.date.none.fl_str_mv |
2005-09-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332005000400009 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332005000400009 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0103-97332005000400009 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Física |
publisher.none.fl_str_mv |
Sociedade Brasileira de Física |
dc.source.none.fl_str_mv |
Brazilian Journal of Physics v.35 n.3a 2005 reponame:Brazilian Journal of Physics instname:Sociedade Brasileira de Física (SBF) instacron:SBF |
instname_str |
Sociedade Brasileira de Física (SBF) |
instacron_str |
SBF |
institution |
SBF |
reponame_str |
Brazilian Journal of Physics |
collection |
Brazilian Journal of Physics |
repository.name.fl_str_mv |
Brazilian Journal of Physics - Sociedade Brasileira de Física (SBF) |
repository.mail.fl_str_mv |
sbfisica@sbfisica.org.br||sbfisica@sbfisica.org.br |
_version_ |
1754734861964279808 |