HETEROTIC GROUP FORMATION IN PSIDIUM GUAJAVA L. BY ARTIFICIAL NEURAL NETWORK AND DISCRIMINANT ANALYSIS
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Revista brasileira de fruticultura (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-29452016000100151 |
Resumo: | ABSTRACT The present study aimed at evaluating the heterotic group formation in guava based on quantitative descriptors and using artificial neural network (ANN). For such, we evaluated eight quantitative descriptors. Large genetic variability was found for the eight quantitative traits in the 138 genotypes of guava. The artificial neural network technique determined that the optimal number of groups was three. The grouping consistency was determined by linear discriminant analysis, which obtained classification percentage of the groups, with a value of 86 %. It was concluded that the artificial neural network method is effective to detect genetic divergence and heterotic group formation. |
id |
SBFRU-1_13422e87379332cb85121644b107c8b9 |
---|---|
oai_identifier_str |
oai:scielo:S0100-29452016000100151 |
network_acronym_str |
SBFRU-1 |
network_name_str |
Revista brasileira de fruticultura (Online) |
repository_id_str |
|
spelling |
HETEROTIC GROUP FORMATION IN PSIDIUM GUAJAVA L. BY ARTIFICIAL NEURAL NETWORK AND DISCRIMINANT ANALYSISGuavagenetic variabilitymultivariate analysisheterotic groupABSTRACT The present study aimed at evaluating the heterotic group formation in guava based on quantitative descriptors and using artificial neural network (ANN). For such, we evaluated eight quantitative descriptors. Large genetic variability was found for the eight quantitative traits in the 138 genotypes of guava. The artificial neural network technique determined that the optimal number of groups was three. The grouping consistency was determined by linear discriminant analysis, which obtained classification percentage of the groups, with a value of 86 %. It was concluded that the artificial neural network method is effective to detect genetic divergence and heterotic group formation.Sociedade Brasileira de Fruticultura2016-02-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-29452016000100151Revista Brasileira de Fruticultura v.38 n.1 2016reponame:Revista brasileira de fruticultura (Online)instname:Sociedade Brasileira de Fruticultura (SBF)instacron:SBFRU10.1590/0100-2945-258/14info:eu-repo/semantics/openAccessCAMPOS,BIANCA MACHADOVIANA,ALEXANDRE PIOQUINTAL,SILVANA SILVA REDBARBOSA,CIBELLE DEGELDAHER,ROGÉRIO FIGUEIREDOeng2016-05-03T00:00:00Zoai:scielo:S0100-29452016000100151Revistahttp://www.scielo.br/rbfhttps://old.scielo.br/oai/scielo-oai.phprbf@fcav.unesp.br||http://rbf.org.br/1806-99670100-2945opendoar:2016-05-03T00:00Revista brasileira de fruticultura (Online) - Sociedade Brasileira de Fruticultura (SBF)false |
dc.title.none.fl_str_mv |
HETEROTIC GROUP FORMATION IN PSIDIUM GUAJAVA L. BY ARTIFICIAL NEURAL NETWORK AND DISCRIMINANT ANALYSIS |
title |
HETEROTIC GROUP FORMATION IN PSIDIUM GUAJAVA L. BY ARTIFICIAL NEURAL NETWORK AND DISCRIMINANT ANALYSIS |
spellingShingle |
HETEROTIC GROUP FORMATION IN PSIDIUM GUAJAVA L. BY ARTIFICIAL NEURAL NETWORK AND DISCRIMINANT ANALYSIS CAMPOS,BIANCA MACHADO Guava genetic variability multivariate analysis heterotic group |
title_short |
HETEROTIC GROUP FORMATION IN PSIDIUM GUAJAVA L. BY ARTIFICIAL NEURAL NETWORK AND DISCRIMINANT ANALYSIS |
title_full |
HETEROTIC GROUP FORMATION IN PSIDIUM GUAJAVA L. BY ARTIFICIAL NEURAL NETWORK AND DISCRIMINANT ANALYSIS |
title_fullStr |
HETEROTIC GROUP FORMATION IN PSIDIUM GUAJAVA L. BY ARTIFICIAL NEURAL NETWORK AND DISCRIMINANT ANALYSIS |
title_full_unstemmed |
HETEROTIC GROUP FORMATION IN PSIDIUM GUAJAVA L. BY ARTIFICIAL NEURAL NETWORK AND DISCRIMINANT ANALYSIS |
title_sort |
HETEROTIC GROUP FORMATION IN PSIDIUM GUAJAVA L. BY ARTIFICIAL NEURAL NETWORK AND DISCRIMINANT ANALYSIS |
author |
CAMPOS,BIANCA MACHADO |
author_facet |
CAMPOS,BIANCA MACHADO VIANA,ALEXANDRE PIO QUINTAL,SILVANA SILVA RED BARBOSA,CIBELLE DEGEL DAHER,ROGÉRIO FIGUEIREDO |
author_role |
author |
author2 |
VIANA,ALEXANDRE PIO QUINTAL,SILVANA SILVA RED BARBOSA,CIBELLE DEGEL DAHER,ROGÉRIO FIGUEIREDO |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
CAMPOS,BIANCA MACHADO VIANA,ALEXANDRE PIO QUINTAL,SILVANA SILVA RED BARBOSA,CIBELLE DEGEL DAHER,ROGÉRIO FIGUEIREDO |
dc.subject.por.fl_str_mv |
Guava genetic variability multivariate analysis heterotic group |
topic |
Guava genetic variability multivariate analysis heterotic group |
description |
ABSTRACT The present study aimed at evaluating the heterotic group formation in guava based on quantitative descriptors and using artificial neural network (ANN). For such, we evaluated eight quantitative descriptors. Large genetic variability was found for the eight quantitative traits in the 138 genotypes of guava. The artificial neural network technique determined that the optimal number of groups was three. The grouping consistency was determined by linear discriminant analysis, which obtained classification percentage of the groups, with a value of 86 %. It was concluded that the artificial neural network method is effective to detect genetic divergence and heterotic group formation. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-02-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-29452016000100151 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-29452016000100151 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/0100-2945-258/14 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Fruticultura |
publisher.none.fl_str_mv |
Sociedade Brasileira de Fruticultura |
dc.source.none.fl_str_mv |
Revista Brasileira de Fruticultura v.38 n.1 2016 reponame:Revista brasileira de fruticultura (Online) instname:Sociedade Brasileira de Fruticultura (SBF) instacron:SBFRU |
instname_str |
Sociedade Brasileira de Fruticultura (SBF) |
instacron_str |
SBFRU |
institution |
SBFRU |
reponame_str |
Revista brasileira de fruticultura (Online) |
collection |
Revista brasileira de fruticultura (Online) |
repository.name.fl_str_mv |
Revista brasileira de fruticultura (Online) - Sociedade Brasileira de Fruticultura (SBF) |
repository.mail.fl_str_mv |
rbf@fcav.unesp.br||http://rbf.org.br/ |
_version_ |
1752122493669212160 |