Mathematical modeling of climatological data to estimate passion fruit crop yield (Passiflora edulis L. f. Flavicarpa y purpurea)
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Revista brasileira de fruticultura (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-29452021000306001 |
Resumo: | Abstract Passion fruit crop yield depends on the behavior of climatic variables, and modeling the dependence relationship of these variables regarding crop yield offers information aimed at facilitating agribusiness decision making. As main aim, passion fruit crop yield was estimated using mathematical models. A multivariate and univariate statistical analysis of meteorological variables was carried out during the observation period between 2007 and 2014 of selected weather stations, identified and located in the Colombian middle tropics (County of Huila). The relationship between yield with the following agroclimatic variables were analyzed: temperature, sunlight, relative humidity, rainfall and ENSO at monthly resolution with empirical and mechanistic models, recommended in scientific literature. Results showed that the multiple regression model requires the highest yield peaks; the adjustment of the multiple regression model is low, while univariate models such as the ARIMA model showed better adjustment in the time series analyzed. The Stewart’s water-yield model has better performance to estimate yield as a function of evapotranspiration in the different phenological phases. |
id |
SBFRU-1_c8a961edb6c2c59d573ff18fcf447eb1 |
---|---|
oai_identifier_str |
oai:scielo:S0100-29452021000306001 |
network_acronym_str |
SBFRU-1 |
network_name_str |
Revista brasileira de fruticultura (Online) |
repository_id_str |
|
spelling |
Mathematical modeling of climatological data to estimate passion fruit crop yield (Passiflora edulis L. f. Flavicarpa y purpurea)yieldcrop yield modelinguncertaintypassion fruitAbstract Passion fruit crop yield depends on the behavior of climatic variables, and modeling the dependence relationship of these variables regarding crop yield offers information aimed at facilitating agribusiness decision making. As main aim, passion fruit crop yield was estimated using mathematical models. A multivariate and univariate statistical analysis of meteorological variables was carried out during the observation period between 2007 and 2014 of selected weather stations, identified and located in the Colombian middle tropics (County of Huila). The relationship between yield with the following agroclimatic variables were analyzed: temperature, sunlight, relative humidity, rainfall and ENSO at monthly resolution with empirical and mechanistic models, recommended in scientific literature. Results showed that the multiple regression model requires the highest yield peaks; the adjustment of the multiple regression model is low, while univariate models such as the ARIMA model showed better adjustment in the time series analyzed. The Stewart’s water-yield model has better performance to estimate yield as a function of evapotranspiration in the different phenological phases.Sociedade Brasileira de Fruticultura2021-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-29452021000306001Revista Brasileira de Fruticultura v.43 n.3 2021reponame:Revista brasileira de fruticultura (Online)instname:Sociedade Brasileira de Fruticultura (SBF)instacron:SBFRU10.1590/0100-29452021182info:eu-repo/semantics/openAccessRamírez Castañeda,Leila NayibeAngarita,Gina Paola GonzálezCleves-Leguizamo,José-Alejandroeng2021-06-24T00:00:00Zoai:scielo:S0100-29452021000306001Revistahttp://www.scielo.br/rbfhttps://old.scielo.br/oai/scielo-oai.phprbf@fcav.unesp.br||http://rbf.org.br/1806-99670100-2945opendoar:2021-06-24T00:00Revista brasileira de fruticultura (Online) - Sociedade Brasileira de Fruticultura (SBF)false |
dc.title.none.fl_str_mv |
Mathematical modeling of climatological data to estimate passion fruit crop yield (Passiflora edulis L. f. Flavicarpa y purpurea) |
title |
Mathematical modeling of climatological data to estimate passion fruit crop yield (Passiflora edulis L. f. Flavicarpa y purpurea) |
spellingShingle |
Mathematical modeling of climatological data to estimate passion fruit crop yield (Passiflora edulis L. f. Flavicarpa y purpurea) Ramírez Castañeda,Leila Nayibe yield crop yield modeling uncertainty passion fruit |
title_short |
Mathematical modeling of climatological data to estimate passion fruit crop yield (Passiflora edulis L. f. Flavicarpa y purpurea) |
title_full |
Mathematical modeling of climatological data to estimate passion fruit crop yield (Passiflora edulis L. f. Flavicarpa y purpurea) |
title_fullStr |
Mathematical modeling of climatological data to estimate passion fruit crop yield (Passiflora edulis L. f. Flavicarpa y purpurea) |
title_full_unstemmed |
Mathematical modeling of climatological data to estimate passion fruit crop yield (Passiflora edulis L. f. Flavicarpa y purpurea) |
title_sort |
Mathematical modeling of climatological data to estimate passion fruit crop yield (Passiflora edulis L. f. Flavicarpa y purpurea) |
author |
Ramírez Castañeda,Leila Nayibe |
author_facet |
Ramírez Castañeda,Leila Nayibe Angarita,Gina Paola González Cleves-Leguizamo,José-Alejandro |
author_role |
author |
author2 |
Angarita,Gina Paola González Cleves-Leguizamo,José-Alejandro |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Ramírez Castañeda,Leila Nayibe Angarita,Gina Paola González Cleves-Leguizamo,José-Alejandro |
dc.subject.por.fl_str_mv |
yield crop yield modeling uncertainty passion fruit |
topic |
yield crop yield modeling uncertainty passion fruit |
description |
Abstract Passion fruit crop yield depends on the behavior of climatic variables, and modeling the dependence relationship of these variables regarding crop yield offers information aimed at facilitating agribusiness decision making. As main aim, passion fruit crop yield was estimated using mathematical models. A multivariate and univariate statistical analysis of meteorological variables was carried out during the observation period between 2007 and 2014 of selected weather stations, identified and located in the Colombian middle tropics (County of Huila). The relationship between yield with the following agroclimatic variables were analyzed: temperature, sunlight, relative humidity, rainfall and ENSO at monthly resolution with empirical and mechanistic models, recommended in scientific literature. Results showed that the multiple regression model requires the highest yield peaks; the adjustment of the multiple regression model is low, while univariate models such as the ARIMA model showed better adjustment in the time series analyzed. The Stewart’s water-yield model has better performance to estimate yield as a function of evapotranspiration in the different phenological phases. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-29452021000306001 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-29452021000306001 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/0100-29452021182 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Fruticultura |
publisher.none.fl_str_mv |
Sociedade Brasileira de Fruticultura |
dc.source.none.fl_str_mv |
Revista Brasileira de Fruticultura v.43 n.3 2021 reponame:Revista brasileira de fruticultura (Online) instname:Sociedade Brasileira de Fruticultura (SBF) instacron:SBFRU |
instname_str |
Sociedade Brasileira de Fruticultura (SBF) |
instacron_str |
SBFRU |
institution |
SBFRU |
reponame_str |
Revista brasileira de fruticultura (Online) |
collection |
Revista brasileira de fruticultura (Online) |
repository.name.fl_str_mv |
Revista brasileira de fruticultura (Online) - Sociedade Brasileira de Fruticultura (SBF) |
repository.mail.fl_str_mv |
rbf@fcav.unesp.br||http://rbf.org.br/ |
_version_ |
1752122496527630336 |