Mathematical modeling of climatological data to estimate passion fruit crop yield (Passiflora edulis L. f. Flavicarpa y purpurea)

Detalhes bibliográficos
Autor(a) principal: Ramírez Castañeda,Leila Nayibe
Data de Publicação: 2021
Outros Autores: Angarita,Gina Paola González, Cleves-Leguizamo,José-Alejandro
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Revista brasileira de fruticultura (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-29452021000306001
Resumo: Abstract Passion fruit crop yield depends on the behavior of climatic variables, and modeling the dependence relationship of these variables regarding crop yield offers information aimed at facilitating agribusiness decision making. As main aim, passion fruit crop yield was estimated using mathematical models. A multivariate and univariate statistical analysis of meteorological variables was carried out during the observation period between 2007 and 2014 of selected weather stations, identified and located in the Colombian middle tropics (County of Huila). The relationship between yield with the following agroclimatic variables were analyzed: temperature, sunlight, relative humidity, rainfall and ENSO at monthly resolution with empirical and mechanistic models, recommended in scientific literature. Results showed that the multiple regression model requires the highest yield peaks; the adjustment of the multiple regression model is low, while univariate models such as the ARIMA model showed better adjustment in the time series analyzed. The Stewart’s water-yield model has better performance to estimate yield as a function of evapotranspiration in the different phenological phases.
id SBFRU-1_c8a961edb6c2c59d573ff18fcf447eb1
oai_identifier_str oai:scielo:S0100-29452021000306001
network_acronym_str SBFRU-1
network_name_str Revista brasileira de fruticultura (Online)
repository_id_str
spelling Mathematical modeling of climatological data to estimate passion fruit crop yield (Passiflora edulis L. f. Flavicarpa y purpurea)yieldcrop yield modelinguncertaintypassion fruitAbstract Passion fruit crop yield depends on the behavior of climatic variables, and modeling the dependence relationship of these variables regarding crop yield offers information aimed at facilitating agribusiness decision making. As main aim, passion fruit crop yield was estimated using mathematical models. A multivariate and univariate statistical analysis of meteorological variables was carried out during the observation period between 2007 and 2014 of selected weather stations, identified and located in the Colombian middle tropics (County of Huila). The relationship between yield with the following agroclimatic variables were analyzed: temperature, sunlight, relative humidity, rainfall and ENSO at monthly resolution with empirical and mechanistic models, recommended in scientific literature. Results showed that the multiple regression model requires the highest yield peaks; the adjustment of the multiple regression model is low, while univariate models such as the ARIMA model showed better adjustment in the time series analyzed. The Stewart’s water-yield model has better performance to estimate yield as a function of evapotranspiration in the different phenological phases.Sociedade Brasileira de Fruticultura2021-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-29452021000306001Revista Brasileira de Fruticultura v.43 n.3 2021reponame:Revista brasileira de fruticultura (Online)instname:Sociedade Brasileira de Fruticultura (SBF)instacron:SBFRU10.1590/0100-29452021182info:eu-repo/semantics/openAccessRamírez Castañeda,Leila NayibeAngarita,Gina Paola GonzálezCleves-Leguizamo,José-Alejandroeng2021-06-24T00:00:00Zoai:scielo:S0100-29452021000306001Revistahttp://www.scielo.br/rbfhttps://old.scielo.br/oai/scielo-oai.phprbf@fcav.unesp.br||http://rbf.org.br/1806-99670100-2945opendoar:2021-06-24T00:00Revista brasileira de fruticultura (Online) - Sociedade Brasileira de Fruticultura (SBF)false
dc.title.none.fl_str_mv Mathematical modeling of climatological data to estimate passion fruit crop yield (Passiflora edulis L. f. Flavicarpa y purpurea)
title Mathematical modeling of climatological data to estimate passion fruit crop yield (Passiflora edulis L. f. Flavicarpa y purpurea)
spellingShingle Mathematical modeling of climatological data to estimate passion fruit crop yield (Passiflora edulis L. f. Flavicarpa y purpurea)
Ramírez Castañeda,Leila Nayibe
yield
crop yield modeling
uncertainty
passion fruit
title_short Mathematical modeling of climatological data to estimate passion fruit crop yield (Passiflora edulis L. f. Flavicarpa y purpurea)
title_full Mathematical modeling of climatological data to estimate passion fruit crop yield (Passiflora edulis L. f. Flavicarpa y purpurea)
title_fullStr Mathematical modeling of climatological data to estimate passion fruit crop yield (Passiflora edulis L. f. Flavicarpa y purpurea)
title_full_unstemmed Mathematical modeling of climatological data to estimate passion fruit crop yield (Passiflora edulis L. f. Flavicarpa y purpurea)
title_sort Mathematical modeling of climatological data to estimate passion fruit crop yield (Passiflora edulis L. f. Flavicarpa y purpurea)
author Ramírez Castañeda,Leila Nayibe
author_facet Ramírez Castañeda,Leila Nayibe
Angarita,Gina Paola González
Cleves-Leguizamo,José-Alejandro
author_role author
author2 Angarita,Gina Paola González
Cleves-Leguizamo,José-Alejandro
author2_role author
author
dc.contributor.author.fl_str_mv Ramírez Castañeda,Leila Nayibe
Angarita,Gina Paola González
Cleves-Leguizamo,José-Alejandro
dc.subject.por.fl_str_mv yield
crop yield modeling
uncertainty
passion fruit
topic yield
crop yield modeling
uncertainty
passion fruit
description Abstract Passion fruit crop yield depends on the behavior of climatic variables, and modeling the dependence relationship of these variables regarding crop yield offers information aimed at facilitating agribusiness decision making. As main aim, passion fruit crop yield was estimated using mathematical models. A multivariate and univariate statistical analysis of meteorological variables was carried out during the observation period between 2007 and 2014 of selected weather stations, identified and located in the Colombian middle tropics (County of Huila). The relationship between yield with the following agroclimatic variables were analyzed: temperature, sunlight, relative humidity, rainfall and ENSO at monthly resolution with empirical and mechanistic models, recommended in scientific literature. Results showed that the multiple regression model requires the highest yield peaks; the adjustment of the multiple regression model is low, while univariate models such as the ARIMA model showed better adjustment in the time series analyzed. The Stewart’s water-yield model has better performance to estimate yield as a function of evapotranspiration in the different phenological phases.
publishDate 2021
dc.date.none.fl_str_mv 2021-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-29452021000306001
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-29452021000306001
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/0100-29452021182
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Fruticultura
publisher.none.fl_str_mv Sociedade Brasileira de Fruticultura
dc.source.none.fl_str_mv Revista Brasileira de Fruticultura v.43 n.3 2021
reponame:Revista brasileira de fruticultura (Online)
instname:Sociedade Brasileira de Fruticultura (SBF)
instacron:SBFRU
instname_str Sociedade Brasileira de Fruticultura (SBF)
instacron_str SBFRU
institution SBFRU
reponame_str Revista brasileira de fruticultura (Online)
collection Revista brasileira de fruticultura (Online)
repository.name.fl_str_mv Revista brasileira de fruticultura (Online) - Sociedade Brasileira de Fruticultura (SBF)
repository.mail.fl_str_mv rbf@fcav.unesp.br||http://rbf.org.br/
_version_ 1752122496527630336