Pectin degradation in ripening and wounded fruits

Detalhes bibliográficos
Autor(a) principal: HUBER,DONALD J.
Data de Publicação: 2001
Outros Autores: KARAKURT,YASAR, JEONG,JIWON
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Revista Brasileira de Fisiologia Vegetal (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-31312001000200009
Resumo: Pectin depolymerization during fruit ripening has been shown to be largely due to pectinolytic enzymes, including polygalacturonases (E.C. 3.2.1.15) and pectinmethylesterases (E.C. 3.2.1.11). Studies have shown that these enzymes are not the primary determinants of softening, although participation in texture changes during the late stages of ripening seems evident. Pectin depolymerization differs significantly between various fruit types, notably avocado and tomato, even though levels of extractable PG activity in these fruits are similar. Collective evidence indicates that the activities of some cell wall enzymes are restricted in vivo, with maximum hydrolytic potential expressed only in response to tissue disruption or wounding. In contrast, other enzymes reported to participate in pectin degradation, notably beta-galactosidases/exo-galactanases, exhibit in vitro activity far below that anticipated to be required for the loss of cell wall galactosyl residues during ripening. Factors controlling in vivo hydrolysis have not been fully explored but might include apoplastic pH, cell wall inorganic ion levels, non-enzymic proteins including the noncatalytic beta-subunit and expansins, wall porosity, and steric hindrances. Recent studies of cell wall metabolism during ripening have demonstrated an orderly process involving, in the early stages, cell wall relaxation and hemicellulose degradation followed, in the later stages, by pectin depolymerization. A limited number of studies have indicated that radical oxygen species generated either enzymically or non-enzymically might participate in scission of pectins and other polysaccharides during ripening and other developmental processes. Similar mechanisms might also occur in response to wounding, an event typically followed by an oxidative burst. Cell wall degradation as influenced by physical wounding could be of particular relevance to the deterioration of lightly processed fruits.
id SBFV-1_0b2c87c7b4cd6f8abcc013811195bc95
oai_identifier_str oai:scielo:S0103-31312001000200009
network_acronym_str SBFV-1
network_name_str Revista Brasileira de Fisiologia Vegetal (Online)
repository_id_str
spelling Pectin degradation in ripening and wounded fruitsapoplastlipidsmembranesoligogalacturonidespectin fragmentspolygalacturonaseradical oxygen speciesPectin depolymerization during fruit ripening has been shown to be largely due to pectinolytic enzymes, including polygalacturonases (E.C. 3.2.1.15) and pectinmethylesterases (E.C. 3.2.1.11). Studies have shown that these enzymes are not the primary determinants of softening, although participation in texture changes during the late stages of ripening seems evident. Pectin depolymerization differs significantly between various fruit types, notably avocado and tomato, even though levels of extractable PG activity in these fruits are similar. Collective evidence indicates that the activities of some cell wall enzymes are restricted in vivo, with maximum hydrolytic potential expressed only in response to tissue disruption or wounding. In contrast, other enzymes reported to participate in pectin degradation, notably beta-galactosidases/exo-galactanases, exhibit in vitro activity far below that anticipated to be required for the loss of cell wall galactosyl residues during ripening. Factors controlling in vivo hydrolysis have not been fully explored but might include apoplastic pH, cell wall inorganic ion levels, non-enzymic proteins including the noncatalytic beta-subunit and expansins, wall porosity, and steric hindrances. Recent studies of cell wall metabolism during ripening have demonstrated an orderly process involving, in the early stages, cell wall relaxation and hemicellulose degradation followed, in the later stages, by pectin depolymerization. A limited number of studies have indicated that radical oxygen species generated either enzymically or non-enzymically might participate in scission of pectins and other polysaccharides during ripening and other developmental processes. Similar mechanisms might also occur in response to wounding, an event typically followed by an oxidative burst. Cell wall degradation as influenced by physical wounding could be of particular relevance to the deterioration of lightly processed fruits.Sociedade Brasileira de Fisiologia Vegetal2001-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-31312001000200009Revista Brasileira de Fisiologia Vegetal v.13 n.2 2001reponame:Revista Brasileira de Fisiologia Vegetal (Online)instname:Sociedade Brasileira de Fisiologia Vegetal (SBFV)instacron:SBFV10.1590/S0103-31312001000200009info:eu-repo/semantics/openAccessHUBER,DONALD J.KARAKURT,YASARJEONG,JIWONeng2002-07-05T00:00:00Zoai:scielo:S0103-31312001000200009Revistahttps://www.scielo.br/j/rbfv/ONGhttps://old.scielo.br/oai/scielo-oai.phppmazza@unicamp.br1806-93550103-3131opendoar:2002-07-05T00:00Revista Brasileira de Fisiologia Vegetal (Online) - Sociedade Brasileira de Fisiologia Vegetal (SBFV)false
dc.title.none.fl_str_mv Pectin degradation in ripening and wounded fruits
title Pectin degradation in ripening and wounded fruits
spellingShingle Pectin degradation in ripening and wounded fruits
HUBER,DONALD J.
apoplast
lipids
membranes
oligogalacturonides
pectin fragments
polygalacturonase
radical oxygen species
title_short Pectin degradation in ripening and wounded fruits
title_full Pectin degradation in ripening and wounded fruits
title_fullStr Pectin degradation in ripening and wounded fruits
title_full_unstemmed Pectin degradation in ripening and wounded fruits
title_sort Pectin degradation in ripening and wounded fruits
author HUBER,DONALD J.
author_facet HUBER,DONALD J.
KARAKURT,YASAR
JEONG,JIWON
author_role author
author2 KARAKURT,YASAR
JEONG,JIWON
author2_role author
author
dc.contributor.author.fl_str_mv HUBER,DONALD J.
KARAKURT,YASAR
JEONG,JIWON
dc.subject.por.fl_str_mv apoplast
lipids
membranes
oligogalacturonides
pectin fragments
polygalacturonase
radical oxygen species
topic apoplast
lipids
membranes
oligogalacturonides
pectin fragments
polygalacturonase
radical oxygen species
description Pectin depolymerization during fruit ripening has been shown to be largely due to pectinolytic enzymes, including polygalacturonases (E.C. 3.2.1.15) and pectinmethylesterases (E.C. 3.2.1.11). Studies have shown that these enzymes are not the primary determinants of softening, although participation in texture changes during the late stages of ripening seems evident. Pectin depolymerization differs significantly between various fruit types, notably avocado and tomato, even though levels of extractable PG activity in these fruits are similar. Collective evidence indicates that the activities of some cell wall enzymes are restricted in vivo, with maximum hydrolytic potential expressed only in response to tissue disruption or wounding. In contrast, other enzymes reported to participate in pectin degradation, notably beta-galactosidases/exo-galactanases, exhibit in vitro activity far below that anticipated to be required for the loss of cell wall galactosyl residues during ripening. Factors controlling in vivo hydrolysis have not been fully explored but might include apoplastic pH, cell wall inorganic ion levels, non-enzymic proteins including the noncatalytic beta-subunit and expansins, wall porosity, and steric hindrances. Recent studies of cell wall metabolism during ripening have demonstrated an orderly process involving, in the early stages, cell wall relaxation and hemicellulose degradation followed, in the later stages, by pectin depolymerization. A limited number of studies have indicated that radical oxygen species generated either enzymically or non-enzymically might participate in scission of pectins and other polysaccharides during ripening and other developmental processes. Similar mechanisms might also occur in response to wounding, an event typically followed by an oxidative burst. Cell wall degradation as influenced by physical wounding could be of particular relevance to the deterioration of lightly processed fruits.
publishDate 2001
dc.date.none.fl_str_mv 2001-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-31312001000200009
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-31312001000200009
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0103-31312001000200009
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Fisiologia Vegetal
publisher.none.fl_str_mv Sociedade Brasileira de Fisiologia Vegetal
dc.source.none.fl_str_mv Revista Brasileira de Fisiologia Vegetal v.13 n.2 2001
reponame:Revista Brasileira de Fisiologia Vegetal (Online)
instname:Sociedade Brasileira de Fisiologia Vegetal (SBFV)
instacron:SBFV
instname_str Sociedade Brasileira de Fisiologia Vegetal (SBFV)
instacron_str SBFV
institution SBFV
reponame_str Revista Brasileira de Fisiologia Vegetal (Online)
collection Revista Brasileira de Fisiologia Vegetal (Online)
repository.name.fl_str_mv Revista Brasileira de Fisiologia Vegetal (Online) - Sociedade Brasileira de Fisiologia Vegetal (SBFV)
repository.mail.fl_str_mv pmazza@unicamp.br
_version_ 1754820904281440256