Identification of photoperception and light signal transduction pathways in citrus

Detalhes bibliográficos
Autor(a) principal: Quecini,Vera
Data de Publicação: 2007
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Genetics and Molecular Biology
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-47572007000500007
Resumo: Studies employing model species have elucidated several aspects of photoperception and light signal transduction that control plant development. However, the information available for economically important crops is scarce. Citrus genome databases of expressed sequence tags (EST) were investigated in order to identify genes coding for functionally characterized proteins responsible for light-regulated developmental control in model plants. Approximately 176,200 EST sequences from 53 libraries were queried and all bona fide and putative photoreceptor gene families were found in citrus species. We have identified 53 orthologs for several families of transcriptional regulators and cytoplasmic proteins mediating photoreceptor-induced responses although some important Arabidopsis phytochrome- and cryptochrome-signaling components are absent from citrus sequence databases. The main gene families responsible for phototropin-mediated signal transduction were present in citrus transcriptome, including general regulatory factors (14-3-3 proteins), scaffolding elements and auxin-responsive transcription factors and transporters. A working model of light perception, signal transduction and response-eliciting in citrus is proposed based on the identified key components. These results demonstrate the power of comparative genomics between model systems and economically important crop species to elucidate several aspects of plant physiology and metabolism.
id SBG-1_42683a4e27d452ccb23304bc1c111a59
oai_identifier_str oai:scielo:S1415-47572007000500007
network_acronym_str SBG-1
network_name_str Genetics and Molecular Biology
repository_id_str
spelling Identification of photoperception and light signal transduction pathways in citruscryptochromedata mininglight signalingphototropinphytochromeStudies employing model species have elucidated several aspects of photoperception and light signal transduction that control plant development. However, the information available for economically important crops is scarce. Citrus genome databases of expressed sequence tags (EST) were investigated in order to identify genes coding for functionally characterized proteins responsible for light-regulated developmental control in model plants. Approximately 176,200 EST sequences from 53 libraries were queried and all bona fide and putative photoreceptor gene families were found in citrus species. We have identified 53 orthologs for several families of transcriptional regulators and cytoplasmic proteins mediating photoreceptor-induced responses although some important Arabidopsis phytochrome- and cryptochrome-signaling components are absent from citrus sequence databases. The main gene families responsible for phototropin-mediated signal transduction were present in citrus transcriptome, including general regulatory factors (14-3-3 proteins), scaffolding elements and auxin-responsive transcription factors and transporters. A working model of light perception, signal transduction and response-eliciting in citrus is proposed based on the identified key components. These results demonstrate the power of comparative genomics between model systems and economically important crop species to elucidate several aspects of plant physiology and metabolism.Sociedade Brasileira de Genética2007-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-47572007000500007Genetics and Molecular Biology v.30 n.3 suppl.0 2007reponame:Genetics and Molecular Biologyinstname:Sociedade Brasileira de Genética (SBG)instacron:SBG10.1590/S1415-47572007000500007info:eu-repo/semantics/openAccessQuecini,Veraeng2007-11-26T00:00:00Zoai:scielo:S1415-47572007000500007Revistahttp://www.gmb.org.br/ONGhttps://old.scielo.br/oai/scielo-oai.php||editor@gmb.org.br1678-46851415-4757opendoar:2007-11-26T00:00Genetics and Molecular Biology - Sociedade Brasileira de Genética (SBG)false
dc.title.none.fl_str_mv Identification of photoperception and light signal transduction pathways in citrus
title Identification of photoperception and light signal transduction pathways in citrus
spellingShingle Identification of photoperception and light signal transduction pathways in citrus
Quecini,Vera
cryptochrome
data mining
light signaling
phototropin
phytochrome
title_short Identification of photoperception and light signal transduction pathways in citrus
title_full Identification of photoperception and light signal transduction pathways in citrus
title_fullStr Identification of photoperception and light signal transduction pathways in citrus
title_full_unstemmed Identification of photoperception and light signal transduction pathways in citrus
title_sort Identification of photoperception and light signal transduction pathways in citrus
author Quecini,Vera
author_facet Quecini,Vera
author_role author
dc.contributor.author.fl_str_mv Quecini,Vera
dc.subject.por.fl_str_mv cryptochrome
data mining
light signaling
phototropin
phytochrome
topic cryptochrome
data mining
light signaling
phototropin
phytochrome
description Studies employing model species have elucidated several aspects of photoperception and light signal transduction that control plant development. However, the information available for economically important crops is scarce. Citrus genome databases of expressed sequence tags (EST) were investigated in order to identify genes coding for functionally characterized proteins responsible for light-regulated developmental control in model plants. Approximately 176,200 EST sequences from 53 libraries were queried and all bona fide and putative photoreceptor gene families were found in citrus species. We have identified 53 orthologs for several families of transcriptional regulators and cytoplasmic proteins mediating photoreceptor-induced responses although some important Arabidopsis phytochrome- and cryptochrome-signaling components are absent from citrus sequence databases. The main gene families responsible for phototropin-mediated signal transduction were present in citrus transcriptome, including general regulatory factors (14-3-3 proteins), scaffolding elements and auxin-responsive transcription factors and transporters. A working model of light perception, signal transduction and response-eliciting in citrus is proposed based on the identified key components. These results demonstrate the power of comparative genomics between model systems and economically important crop species to elucidate several aspects of plant physiology and metabolism.
publishDate 2007
dc.date.none.fl_str_mv 2007-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-47572007000500007
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-47572007000500007
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S1415-47572007000500007
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Genética
publisher.none.fl_str_mv Sociedade Brasileira de Genética
dc.source.none.fl_str_mv Genetics and Molecular Biology v.30 n.3 suppl.0 2007
reponame:Genetics and Molecular Biology
instname:Sociedade Brasileira de Genética (SBG)
instacron:SBG
instname_str Sociedade Brasileira de Genética (SBG)
instacron_str SBG
institution SBG
reponame_str Genetics and Molecular Biology
collection Genetics and Molecular Biology
repository.name.fl_str_mv Genetics and Molecular Biology - Sociedade Brasileira de Genética (SBG)
repository.mail.fl_str_mv ||editor@gmb.org.br
_version_ 1752122380719751168