Patterns of heterochromatin distribution in plant chromosomes

Detalhes bibliográficos
Autor(a) principal: Guerra,Marcelo
Data de Publicação: 2000
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Genetics and Molecular Biology
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-47572000000400049
Resumo: The C-band distribution patterns of 105 angiosperm species were compared to identify general patterns or preferential sites for heterochromatin. The base-specific fluorochrome reaction of heterochromatin for 58 of these species and the role played by the average chromosome size in band distribution were also considered. The results showed that heterochromatin was preferentially located in similar chromosome regions, regardless of the distance from the centromere. This trend results in generalized bands, with heterochromatin distribution being identical in most chromosomes of a karyotype. Such bands very often displayed the same fluorochrome reaction, suggesting possible repeat transfer between non-homologous sites. Chromosome size may also play a role in heterochromatin location, since proximal bands were much more common in small-sized chromosomes.
id SBG-1_69d239d9e9ad7e2c5c5160b94b9c3b38
oai_identifier_str oai:scielo:S1415-47572000000400049
network_acronym_str SBG-1
network_name_str Genetics and Molecular Biology
repository_id_str
spelling Patterns of heterochromatin distribution in plant chromosomesThe C-band distribution patterns of 105 angiosperm species were compared to identify general patterns or preferential sites for heterochromatin. The base-specific fluorochrome reaction of heterochromatin for 58 of these species and the role played by the average chromosome size in band distribution were also considered. The results showed that heterochromatin was preferentially located in similar chromosome regions, regardless of the distance from the centromere. This trend results in generalized bands, with heterochromatin distribution being identical in most chromosomes of a karyotype. Such bands very often displayed the same fluorochrome reaction, suggesting possible repeat transfer between non-homologous sites. Chromosome size may also play a role in heterochromatin location, since proximal bands were much more common in small-sized chromosomes.Sociedade Brasileira de Genética2000-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-47572000000400049Genetics and Molecular Biology v.23 n.4 2000reponame:Genetics and Molecular Biologyinstname:Sociedade Brasileira de Genética (SBG)instacron:SBG10.1590/S1415-47572000000400049info:eu-repo/semantics/openAccessGuerra,Marceloeng2001-11-13T00:00:00Zoai:scielo:S1415-47572000000400049Revistahttp://www.gmb.org.br/ONGhttps://old.scielo.br/oai/scielo-oai.php||editor@gmb.org.br1678-46851415-4757opendoar:2001-11-13T00:00Genetics and Molecular Biology - Sociedade Brasileira de Genética (SBG)false
dc.title.none.fl_str_mv Patterns of heterochromatin distribution in plant chromosomes
title Patterns of heterochromatin distribution in plant chromosomes
spellingShingle Patterns of heterochromatin distribution in plant chromosomes
Guerra,Marcelo
title_short Patterns of heterochromatin distribution in plant chromosomes
title_full Patterns of heterochromatin distribution in plant chromosomes
title_fullStr Patterns of heterochromatin distribution in plant chromosomes
title_full_unstemmed Patterns of heterochromatin distribution in plant chromosomes
title_sort Patterns of heterochromatin distribution in plant chromosomes
author Guerra,Marcelo
author_facet Guerra,Marcelo
author_role author
dc.contributor.author.fl_str_mv Guerra,Marcelo
description The C-band distribution patterns of 105 angiosperm species were compared to identify general patterns or preferential sites for heterochromatin. The base-specific fluorochrome reaction of heterochromatin for 58 of these species and the role played by the average chromosome size in band distribution were also considered. The results showed that heterochromatin was preferentially located in similar chromosome regions, regardless of the distance from the centromere. This trend results in generalized bands, with heterochromatin distribution being identical in most chromosomes of a karyotype. Such bands very often displayed the same fluorochrome reaction, suggesting possible repeat transfer between non-homologous sites. Chromosome size may also play a role in heterochromatin location, since proximal bands were much more common in small-sized chromosomes.
publishDate 2000
dc.date.none.fl_str_mv 2000-12-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-47572000000400049
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-47572000000400049
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S1415-47572000000400049
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Genética
publisher.none.fl_str_mv Sociedade Brasileira de Genética
dc.source.none.fl_str_mv Genetics and Molecular Biology v.23 n.4 2000
reponame:Genetics and Molecular Biology
instname:Sociedade Brasileira de Genética (SBG)
instacron:SBG
instname_str Sociedade Brasileira de Genética (SBG)
instacron_str SBG
institution SBG
reponame_str Genetics and Molecular Biology
collection Genetics and Molecular Biology
repository.name.fl_str_mv Genetics and Molecular Biology - Sociedade Brasileira de Genética (SBG)
repository.mail.fl_str_mv ||editor@gmb.org.br
_version_ 1752122378120331264