Clinical genomics and precision medicine
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Genetics and Molecular Biology |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-47572022000300104 |
Resumo: | Abstract Precision Medicine emerges from the genomic paradigm of health and disease. For precise molecular diagnoses of genetic diseases, we must analyze the Whole Exome (WES) or the Whole Genome (WGS). By not needing exon capture, WGS is more powerful to detect single nucleotide variants and copy number variants. In healthy individuals, we can observe monogenic highly penetrant variants, which may be causally responsible for diseases, and also susceptibility variants, associated with common polygenic diseases. But there is the major problem of penetrance. Thus, there is the question of whether it is worthwhile to perform WGS in all healthy individuals as a step towards Precision Medicine. The genetic architecture of disease is consistent with the fact that they are all polygenic. Moreover, ancestry adds another layer of complexity. We are now capable of obtaining Polygenic Risk Scores for all complex diseases using only data from new generation sequencing. Yet, review of available evidence does not at present favor the idea that WGS analyses are sufficiently developed to allow reliable predictions of the risk components for monogenic and polygenic hereditary diseases in healthy individuals. Probably, it is still better for WGS to remain reserved for the diagnosis of pathogenic variants of Mendelian diseases. |
id |
SBG-1_83ec78929662b574ec9953295aabce26 |
---|---|
oai_identifier_str |
oai:scielo:S1415-47572022000300104 |
network_acronym_str |
SBG-1 |
network_name_str |
Genetics and Molecular Biology |
repository_id_str |
|
spelling |
Clinical genomics and precision medicineGenomicswhole exome sequencewhole genome sequenceMendelian disorderspolygenic diseasesAbstract Precision Medicine emerges from the genomic paradigm of health and disease. For precise molecular diagnoses of genetic diseases, we must analyze the Whole Exome (WES) or the Whole Genome (WGS). By not needing exon capture, WGS is more powerful to detect single nucleotide variants and copy number variants. In healthy individuals, we can observe monogenic highly penetrant variants, which may be causally responsible for diseases, and also susceptibility variants, associated with common polygenic diseases. But there is the major problem of penetrance. Thus, there is the question of whether it is worthwhile to perform WGS in all healthy individuals as a step towards Precision Medicine. The genetic architecture of disease is consistent with the fact that they are all polygenic. Moreover, ancestry adds another layer of complexity. We are now capable of obtaining Polygenic Risk Scores for all complex diseases using only data from new generation sequencing. Yet, review of available evidence does not at present favor the idea that WGS analyses are sufficiently developed to allow reliable predictions of the risk components for monogenic and polygenic hereditary diseases in healthy individuals. Probably, it is still better for WGS to remain reserved for the diagnosis of pathogenic variants of Mendelian diseases.Sociedade Brasileira de Genética2022-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-47572022000300104Genetics and Molecular Biology v.45 n.3 2022reponame:Genetics and Molecular Biologyinstname:Sociedade Brasileira de Genética (SBG)instacron:SBG10.1590/1678-4685-gmb-2022-0150info:eu-repo/semantics/openAccessPena,Sérgio D. J.Tarazona-Santos,Eduardoeng2022-10-07T00:00:00Zoai:scielo:S1415-47572022000300104Revistahttp://www.gmb.org.br/ONGhttps://old.scielo.br/oai/scielo-oai.php||editor@gmb.org.br1678-46851415-4757opendoar:2022-10-07T00:00Genetics and Molecular Biology - Sociedade Brasileira de Genética (SBG)false |
dc.title.none.fl_str_mv |
Clinical genomics and precision medicine |
title |
Clinical genomics and precision medicine |
spellingShingle |
Clinical genomics and precision medicine Pena,Sérgio D. J. Genomics whole exome sequence whole genome sequence Mendelian disorders polygenic diseases |
title_short |
Clinical genomics and precision medicine |
title_full |
Clinical genomics and precision medicine |
title_fullStr |
Clinical genomics and precision medicine |
title_full_unstemmed |
Clinical genomics and precision medicine |
title_sort |
Clinical genomics and precision medicine |
author |
Pena,Sérgio D. J. |
author_facet |
Pena,Sérgio D. J. Tarazona-Santos,Eduardo |
author_role |
author |
author2 |
Tarazona-Santos,Eduardo |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Pena,Sérgio D. J. Tarazona-Santos,Eduardo |
dc.subject.por.fl_str_mv |
Genomics whole exome sequence whole genome sequence Mendelian disorders polygenic diseases |
topic |
Genomics whole exome sequence whole genome sequence Mendelian disorders polygenic diseases |
description |
Abstract Precision Medicine emerges from the genomic paradigm of health and disease. For precise molecular diagnoses of genetic diseases, we must analyze the Whole Exome (WES) or the Whole Genome (WGS). By not needing exon capture, WGS is more powerful to detect single nucleotide variants and copy number variants. In healthy individuals, we can observe monogenic highly penetrant variants, which may be causally responsible for diseases, and also susceptibility variants, associated with common polygenic diseases. But there is the major problem of penetrance. Thus, there is the question of whether it is worthwhile to perform WGS in all healthy individuals as a step towards Precision Medicine. The genetic architecture of disease is consistent with the fact that they are all polygenic. Moreover, ancestry adds another layer of complexity. We are now capable of obtaining Polygenic Risk Scores for all complex diseases using only data from new generation sequencing. Yet, review of available evidence does not at present favor the idea that WGS analyses are sufficiently developed to allow reliable predictions of the risk components for monogenic and polygenic hereditary diseases in healthy individuals. Probably, it is still better for WGS to remain reserved for the diagnosis of pathogenic variants of Mendelian diseases. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-47572022000300104 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-47572022000300104 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1678-4685-gmb-2022-0150 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Genética |
publisher.none.fl_str_mv |
Sociedade Brasileira de Genética |
dc.source.none.fl_str_mv |
Genetics and Molecular Biology v.45 n.3 2022 reponame:Genetics and Molecular Biology instname:Sociedade Brasileira de Genética (SBG) instacron:SBG |
instname_str |
Sociedade Brasileira de Genética (SBG) |
instacron_str |
SBG |
institution |
SBG |
reponame_str |
Genetics and Molecular Biology |
collection |
Genetics and Molecular Biology |
repository.name.fl_str_mv |
Genetics and Molecular Biology - Sociedade Brasileira de Genética (SBG) |
repository.mail.fl_str_mv |
||editor@gmb.org.br |
_version_ |
1752122390636134400 |