Familial Dysautonomia: Mechanisms and Models
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Genetics and Molecular Biology |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-47572016000400497 |
Resumo: | Abstract Hereditary Sensory and Autonomic Neuropathies (HSANs) compose a heterogeneous group of genetic disorders characterized by sensory and autonomic dysfunctions. Familial Dysautonomia (FD), also known as HSAN III, is an autosomal recessive disorder that affects 1/3,600 live births in the Ashkenazi Jewish population. The major features of the disease are already present at birth and are attributed to abnormal development and progressive degeneration of the sensory and autonomic nervous systems. Despite clinical interventions, the disease is inevitably fatal. FD is caused by a point mutation in intron 20 of the IKBKAP gene that results in severe reduction in expression of IKAP, its encoded protein. In vitro and in vivo studies have shown that IKAP is involved in multiple intracellular processes, and suggest that failed target innervation and/or impaired neurotrophic retrograde transport are the primary causes of neuronal cell death in FD. However, FD is far more complex, and appears to affect several other organs and systems in addition to the peripheral nervous system. With the recent generation of mouse models that recapitulate the molecular and pathological features of the disease, it is now possible to further investigate the mechanisms underlying different aspects of the disorder, and to test novel therapeutic strategies. |
id |
SBG-1_8aedf2f03c8a4ed3785b36a1dd19fdf6 |
---|---|
oai_identifier_str |
oai:scielo:S1415-47572016000400497 |
network_acronym_str |
SBG-1 |
network_name_str |
Genetics and Molecular Biology |
repository_id_str |
|
spelling |
Familial Dysautonomia: Mechanisms and ModelsFamilial DysautonomiaHSANIKAPIkbkapELP1Abstract Hereditary Sensory and Autonomic Neuropathies (HSANs) compose a heterogeneous group of genetic disorders characterized by sensory and autonomic dysfunctions. Familial Dysautonomia (FD), also known as HSAN III, is an autosomal recessive disorder that affects 1/3,600 live births in the Ashkenazi Jewish population. The major features of the disease are already present at birth and are attributed to abnormal development and progressive degeneration of the sensory and autonomic nervous systems. Despite clinical interventions, the disease is inevitably fatal. FD is caused by a point mutation in intron 20 of the IKBKAP gene that results in severe reduction in expression of IKAP, its encoded protein. In vitro and in vivo studies have shown that IKAP is involved in multiple intracellular processes, and suggest that failed target innervation and/or impaired neurotrophic retrograde transport are the primary causes of neuronal cell death in FD. However, FD is far more complex, and appears to affect several other organs and systems in addition to the peripheral nervous system. With the recent generation of mouse models that recapitulate the molecular and pathological features of the disease, it is now possible to further investigate the mechanisms underlying different aspects of the disorder, and to test novel therapeutic strategies.Sociedade Brasileira de Genética2016-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-47572016000400497Genetics and Molecular Biology v.39 n.4 2016reponame:Genetics and Molecular Biologyinstname:Sociedade Brasileira de Genética (SBG)instacron:SBG10.1590/1678-4685-gmb-2015-0335info:eu-repo/semantics/openAccessDietrich,PaulaDragatsis,Ioanniseng2016-11-25T00:00:00Zoai:scielo:S1415-47572016000400497Revistahttp://www.gmb.org.br/ONGhttps://old.scielo.br/oai/scielo-oai.php||editor@gmb.org.br1678-46851415-4757opendoar:2016-11-25T00:00Genetics and Molecular Biology - Sociedade Brasileira de Genética (SBG)false |
dc.title.none.fl_str_mv |
Familial Dysautonomia: Mechanisms and Models |
title |
Familial Dysautonomia: Mechanisms and Models |
spellingShingle |
Familial Dysautonomia: Mechanisms and Models Dietrich,Paula Familial Dysautonomia HSAN IKAP Ikbkap ELP1 |
title_short |
Familial Dysautonomia: Mechanisms and Models |
title_full |
Familial Dysautonomia: Mechanisms and Models |
title_fullStr |
Familial Dysautonomia: Mechanisms and Models |
title_full_unstemmed |
Familial Dysautonomia: Mechanisms and Models |
title_sort |
Familial Dysautonomia: Mechanisms and Models |
author |
Dietrich,Paula |
author_facet |
Dietrich,Paula Dragatsis,Ioannis |
author_role |
author |
author2 |
Dragatsis,Ioannis |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Dietrich,Paula Dragatsis,Ioannis |
dc.subject.por.fl_str_mv |
Familial Dysautonomia HSAN IKAP Ikbkap ELP1 |
topic |
Familial Dysautonomia HSAN IKAP Ikbkap ELP1 |
description |
Abstract Hereditary Sensory and Autonomic Neuropathies (HSANs) compose a heterogeneous group of genetic disorders characterized by sensory and autonomic dysfunctions. Familial Dysautonomia (FD), also known as HSAN III, is an autosomal recessive disorder that affects 1/3,600 live births in the Ashkenazi Jewish population. The major features of the disease are already present at birth and are attributed to abnormal development and progressive degeneration of the sensory and autonomic nervous systems. Despite clinical interventions, the disease is inevitably fatal. FD is caused by a point mutation in intron 20 of the IKBKAP gene that results in severe reduction in expression of IKAP, its encoded protein. In vitro and in vivo studies have shown that IKAP is involved in multiple intracellular processes, and suggest that failed target innervation and/or impaired neurotrophic retrograde transport are the primary causes of neuronal cell death in FD. However, FD is far more complex, and appears to affect several other organs and systems in addition to the peripheral nervous system. With the recent generation of mouse models that recapitulate the molecular and pathological features of the disease, it is now possible to further investigate the mechanisms underlying different aspects of the disorder, and to test novel therapeutic strategies. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-12-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-47572016000400497 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-47572016000400497 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1678-4685-gmb-2015-0335 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Genética |
publisher.none.fl_str_mv |
Sociedade Brasileira de Genética |
dc.source.none.fl_str_mv |
Genetics and Molecular Biology v.39 n.4 2016 reponame:Genetics and Molecular Biology instname:Sociedade Brasileira de Genética (SBG) instacron:SBG |
instname_str |
Sociedade Brasileira de Genética (SBG) |
instacron_str |
SBG |
institution |
SBG |
reponame_str |
Genetics and Molecular Biology |
collection |
Genetics and Molecular Biology |
repository.name.fl_str_mv |
Genetics and Molecular Biology - Sociedade Brasileira de Genética (SBG) |
repository.mail.fl_str_mv |
||editor@gmb.org.br |
_version_ |
1752122387068878848 |