A genetic algorithm for the ligand-protein docking problem

Detalhes bibliográficos
Autor(a) principal: Magalhães,Camila S. de
Data de Publicação: 2004
Outros Autores: Barbosa,Hélio J.C., Dardenne,Laurent E.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Genetics and Molecular Biology
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-47572004000400022
Resumo: We analyzed the performance of a real coded "steady-state" genetic algorithm (SSGA) using a grid-based methodology in docking five HIV-1 protease-ligand complexes having known three-dimensional structures. All ligands tested are highly flexible, having more than 10 conformational degrees of freedom. The SSGA was tested for the rigid and flexible ligand docking cases. The implemented genetic algorithm was able to dock successfully rigid and flexible ligand molecules, but with a decreasing performance when the number of ligand conformational degrees of freedom increased. The docked lowest-energy structures have root mean square deviation (RMSD) with respect to the corresponding experimental crystallographic structure ranging from 0.037 Å to 0.090 Å in the rigid docking, and 0.420 Å to 1.943 Å in the flexible docking. We found that not only the number of ligand conformational degrees of freedom is an important aspect to the algorithm performance, but also that the more internal dihedral angles are critical. Furthermore, our results showed that the initial population distribution can be relevant for the algorithm performance.
id SBG-1_bd17e56e42c9675287e45332e2d9c453
oai_identifier_str oai:scielo:S1415-47572004000400022
network_acronym_str SBG-1
network_name_str Genetics and Molecular Biology
repository_id_str
spelling A genetic algorithm for the ligand-protein docking problemligand-protein dockingflexible dockinggenetic algorithmsWe analyzed the performance of a real coded "steady-state" genetic algorithm (SSGA) using a grid-based methodology in docking five HIV-1 protease-ligand complexes having known three-dimensional structures. All ligands tested are highly flexible, having more than 10 conformational degrees of freedom. The SSGA was tested for the rigid and flexible ligand docking cases. The implemented genetic algorithm was able to dock successfully rigid and flexible ligand molecules, but with a decreasing performance when the number of ligand conformational degrees of freedom increased. The docked lowest-energy structures have root mean square deviation (RMSD) with respect to the corresponding experimental crystallographic structure ranging from 0.037 Å to 0.090 Å in the rigid docking, and 0.420 Å to 1.943 Å in the flexible docking. We found that not only the number of ligand conformational degrees of freedom is an important aspect to the algorithm performance, but also that the more internal dihedral angles are critical. Furthermore, our results showed that the initial population distribution can be relevant for the algorithm performance.Sociedade Brasileira de Genética2004-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-47572004000400022Genetics and Molecular Biology v.27 n.4 2004reponame:Genetics and Molecular Biologyinstname:Sociedade Brasileira de Genética (SBG)instacron:SBG10.1590/S1415-47572004000400022info:eu-repo/semantics/openAccessMagalhães,Camila S. deBarbosa,Hélio J.C.Dardenne,Laurent E.eng2005-01-14T00:00:00Zoai:scielo:S1415-47572004000400022Revistahttp://www.gmb.org.br/ONGhttps://old.scielo.br/oai/scielo-oai.php||editor@gmb.org.br1678-46851415-4757opendoar:2005-01-14T00:00Genetics and Molecular Biology - Sociedade Brasileira de Genética (SBG)false
dc.title.none.fl_str_mv A genetic algorithm for the ligand-protein docking problem
title A genetic algorithm for the ligand-protein docking problem
spellingShingle A genetic algorithm for the ligand-protein docking problem
Magalhães,Camila S. de
ligand-protein docking
flexible docking
genetic algorithms
title_short A genetic algorithm for the ligand-protein docking problem
title_full A genetic algorithm for the ligand-protein docking problem
title_fullStr A genetic algorithm for the ligand-protein docking problem
title_full_unstemmed A genetic algorithm for the ligand-protein docking problem
title_sort A genetic algorithm for the ligand-protein docking problem
author Magalhães,Camila S. de
author_facet Magalhães,Camila S. de
Barbosa,Hélio J.C.
Dardenne,Laurent E.
author_role author
author2 Barbosa,Hélio J.C.
Dardenne,Laurent E.
author2_role author
author
dc.contributor.author.fl_str_mv Magalhães,Camila S. de
Barbosa,Hélio J.C.
Dardenne,Laurent E.
dc.subject.por.fl_str_mv ligand-protein docking
flexible docking
genetic algorithms
topic ligand-protein docking
flexible docking
genetic algorithms
description We analyzed the performance of a real coded "steady-state" genetic algorithm (SSGA) using a grid-based methodology in docking five HIV-1 protease-ligand complexes having known three-dimensional structures. All ligands tested are highly flexible, having more than 10 conformational degrees of freedom. The SSGA was tested for the rigid and flexible ligand docking cases. The implemented genetic algorithm was able to dock successfully rigid and flexible ligand molecules, but with a decreasing performance when the number of ligand conformational degrees of freedom increased. The docked lowest-energy structures have root mean square deviation (RMSD) with respect to the corresponding experimental crystallographic structure ranging from 0.037 Å to 0.090 Å in the rigid docking, and 0.420 Å to 1.943 Å in the flexible docking. We found that not only the number of ligand conformational degrees of freedom is an important aspect to the algorithm performance, but also that the more internal dihedral angles are critical. Furthermore, our results showed that the initial population distribution can be relevant for the algorithm performance.
publishDate 2004
dc.date.none.fl_str_mv 2004-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-47572004000400022
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-47572004000400022
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S1415-47572004000400022
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Genética
publisher.none.fl_str_mv Sociedade Brasileira de Genética
dc.source.none.fl_str_mv Genetics and Molecular Biology v.27 n.4 2004
reponame:Genetics and Molecular Biology
instname:Sociedade Brasileira de Genética (SBG)
instacron:SBG
instname_str Sociedade Brasileira de Genética (SBG)
instacron_str SBG
institution SBG
reponame_str Genetics and Molecular Biology
collection Genetics and Molecular Biology
repository.name.fl_str_mv Genetics and Molecular Biology - Sociedade Brasileira de Genética (SBG)
repository.mail.fl_str_mv ||editor@gmb.org.br
_version_ 1752122379400642560