Performance and parameterization of the algorithm Simplified Generalized Simulated Annealing

Detalhes bibliográficos
Autor(a) principal: Dall'Igna Júnior,Alcino
Data de Publicação: 2004
Outros Autores: Silva,Renato S., Mundim,Kleber C., Dardenne,Laurent E.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Genetics and Molecular Biology
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-47572004000400024
Resumo: The main goal of this study is to find the most effective set of parameters for the Simplified Generalized Simulated Annealing algorithm, SGSA, when applied to distinct cost function as well as to find a possible correlation between the values of these parameters sets and some topological characteristics of the hypersurface of the respective cost function. The SGSA algorithm is an extended and simplified derivative of the GSA algorithm, a Markovian stochastic process based on Tsallis statistics that has been used in many classes of problems, in particular, in biological molecular systems optimization. In all but one of the studied cost functions, the global minimum was found in 100% of the 50 runs. For these functions the best visiting parameter, qV, belongs to the interval [1.2, 1.7]. Also, the temperature decaying parameter, qT, should be increased when better precision is required. Moreover, the similarity in the locus of optimal parameter sets observed in some functions indicates that possibly one could extract topological information about the cost functions from these sets.
id SBG-1_f89078723a4e012f4630b6c1e07cd295
oai_identifier_str oai:scielo:S1415-47572004000400024
network_acronym_str SBG-1
network_name_str Genetics and Molecular Biology
repository_id_str
spelling Performance and parameterization of the algorithm Simplified Generalized Simulated Annealingoptimizationgeneralized simulated annealingThe main goal of this study is to find the most effective set of parameters for the Simplified Generalized Simulated Annealing algorithm, SGSA, when applied to distinct cost function as well as to find a possible correlation between the values of these parameters sets and some topological characteristics of the hypersurface of the respective cost function. The SGSA algorithm is an extended and simplified derivative of the GSA algorithm, a Markovian stochastic process based on Tsallis statistics that has been used in many classes of problems, in particular, in biological molecular systems optimization. In all but one of the studied cost functions, the global minimum was found in 100% of the 50 runs. For these functions the best visiting parameter, qV, belongs to the interval [1.2, 1.7]. Also, the temperature decaying parameter, qT, should be increased when better precision is required. Moreover, the similarity in the locus of optimal parameter sets observed in some functions indicates that possibly one could extract topological information about the cost functions from these sets.Sociedade Brasileira de Genética2004-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-47572004000400024Genetics and Molecular Biology v.27 n.4 2004reponame:Genetics and Molecular Biologyinstname:Sociedade Brasileira de Genética (SBG)instacron:SBG10.1590/S1415-47572004000400024info:eu-repo/semantics/openAccessDall'Igna Júnior,AlcinoSilva,Renato S.Mundim,Kleber C.Dardenne,Laurent E.eng2005-01-14T00:00:00Zoai:scielo:S1415-47572004000400024Revistahttp://www.gmb.org.br/ONGhttps://old.scielo.br/oai/scielo-oai.php||editor@gmb.org.br1678-46851415-4757opendoar:2005-01-14T00:00Genetics and Molecular Biology - Sociedade Brasileira de Genética (SBG)false
dc.title.none.fl_str_mv Performance and parameterization of the algorithm Simplified Generalized Simulated Annealing
title Performance and parameterization of the algorithm Simplified Generalized Simulated Annealing
spellingShingle Performance and parameterization of the algorithm Simplified Generalized Simulated Annealing
Dall'Igna Júnior,Alcino
optimization
generalized simulated annealing
title_short Performance and parameterization of the algorithm Simplified Generalized Simulated Annealing
title_full Performance and parameterization of the algorithm Simplified Generalized Simulated Annealing
title_fullStr Performance and parameterization of the algorithm Simplified Generalized Simulated Annealing
title_full_unstemmed Performance and parameterization of the algorithm Simplified Generalized Simulated Annealing
title_sort Performance and parameterization of the algorithm Simplified Generalized Simulated Annealing
author Dall'Igna Júnior,Alcino
author_facet Dall'Igna Júnior,Alcino
Silva,Renato S.
Mundim,Kleber C.
Dardenne,Laurent E.
author_role author
author2 Silva,Renato S.
Mundim,Kleber C.
Dardenne,Laurent E.
author2_role author
author
author
dc.contributor.author.fl_str_mv Dall'Igna Júnior,Alcino
Silva,Renato S.
Mundim,Kleber C.
Dardenne,Laurent E.
dc.subject.por.fl_str_mv optimization
generalized simulated annealing
topic optimization
generalized simulated annealing
description The main goal of this study is to find the most effective set of parameters for the Simplified Generalized Simulated Annealing algorithm, SGSA, when applied to distinct cost function as well as to find a possible correlation between the values of these parameters sets and some topological characteristics of the hypersurface of the respective cost function. The SGSA algorithm is an extended and simplified derivative of the GSA algorithm, a Markovian stochastic process based on Tsallis statistics that has been used in many classes of problems, in particular, in biological molecular systems optimization. In all but one of the studied cost functions, the global minimum was found in 100% of the 50 runs. For these functions the best visiting parameter, qV, belongs to the interval [1.2, 1.7]. Also, the temperature decaying parameter, qT, should be increased when better precision is required. Moreover, the similarity in the locus of optimal parameter sets observed in some functions indicates that possibly one could extract topological information about the cost functions from these sets.
publishDate 2004
dc.date.none.fl_str_mv 2004-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-47572004000400024
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-47572004000400024
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S1415-47572004000400024
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Genética
publisher.none.fl_str_mv Sociedade Brasileira de Genética
dc.source.none.fl_str_mv Genetics and Molecular Biology v.27 n.4 2004
reponame:Genetics and Molecular Biology
instname:Sociedade Brasileira de Genética (SBG)
instacron:SBG
instname_str Sociedade Brasileira de Genética (SBG)
instacron_str SBG
institution SBG
reponame_str Genetics and Molecular Biology
collection Genetics and Molecular Biology
repository.name.fl_str_mv Genetics and Molecular Biology - Sociedade Brasileira de Genética (SBG)
repository.mail.fl_str_mv ||editor@gmb.org.br
_version_ 1752122379403788288