Paleomagnetism of the Amazonian Craton and its role in paleocontinents

Detalhes bibliográficos
Autor(a) principal: D'Agrella-Filho,Manoel Souza
Data de Publicação: 2016
Outros Autores: Bispo-Santos,Franklin, Trindade,Ricardo Ivan Ferreira, Antonio,Paul Yves Jean
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Brazilian Journal of Geology
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2317-48892016000200275
Resumo: ABSTRACT: In the last decade, the participation of the Amazonian Craton on Precambrian supercontinents has been clarified thanks to a wealth of new paleomagnetic data. Paleo to Mesoproterozoic paleomagnetic data favored that the Amazonian Craton joined the Columbia supercontinent at 1780 Ma ago, in a scenario that resembled the South AMerica and BAltica (SAMBA) configuration. Then, the mismatch of paleomagnetic poles within the Craton implied that either dextral transcurrent movements occurred between Guiana and Brazil-Central Shield after 1400 Ma or internal rotation movements of the Amazonia-West African block took place between 1780 and 1400 Ma. The presently available late-Mesoproterozoic paleomagnetic data are compatible with two different scenarios for the Amazonian Craton in the Rodinia supercontinent. The first one involves an oblique collision of the Amazonian Craton with Laurentia at 1200 Ma ago, starting at the present-day Texas location, followed by transcurrent movements, until the final collision of the Amazonian Craton with Baltica at ca. 1000 Ma. The second one requires drifting of the Amazonian Craton and Baltica away from the other components of Columbia after 1260 Ma, followed by clockwise rotation and collision of these blocks with Laurentia along Grenvillian Belt at 1000 Ma. Finally, although the time Amazonian Craton collided with the Central African block is yet very disputed, the few late Neoproterozoic/Cambrian paleomagnetic poles available for the Amazonian Craton, Laurentia and other West Gondwana blocks suggest that the Clymene Ocean separating these blocks has only closed at late Ediacaran to Cambrian times, after the Amazonian Craton rifted apart from Laurentia at ca. 570 Ma.
id SBGEO-1_f7cf894eab98aa7f88e0144e3e387dc0
oai_identifier_str oai:scielo:S2317-48892016000200275
network_acronym_str SBGEO-1
network_name_str Brazilian Journal of Geology
repository_id_str
spelling Paleomagnetism of the Amazonian Craton and its role in paleocontinentsAmazonian CratonpaleomagnetismsupercontinentsColumbiaRodiniaGondwanaABSTRACT: In the last decade, the participation of the Amazonian Craton on Precambrian supercontinents has been clarified thanks to a wealth of new paleomagnetic data. Paleo to Mesoproterozoic paleomagnetic data favored that the Amazonian Craton joined the Columbia supercontinent at 1780 Ma ago, in a scenario that resembled the South AMerica and BAltica (SAMBA) configuration. Then, the mismatch of paleomagnetic poles within the Craton implied that either dextral transcurrent movements occurred between Guiana and Brazil-Central Shield after 1400 Ma or internal rotation movements of the Amazonia-West African block took place between 1780 and 1400 Ma. The presently available late-Mesoproterozoic paleomagnetic data are compatible with two different scenarios for the Amazonian Craton in the Rodinia supercontinent. The first one involves an oblique collision of the Amazonian Craton with Laurentia at 1200 Ma ago, starting at the present-day Texas location, followed by transcurrent movements, until the final collision of the Amazonian Craton with Baltica at ca. 1000 Ma. The second one requires drifting of the Amazonian Craton and Baltica away from the other components of Columbia after 1260 Ma, followed by clockwise rotation and collision of these blocks with Laurentia along Grenvillian Belt at 1000 Ma. Finally, although the time Amazonian Craton collided with the Central African block is yet very disputed, the few late Neoproterozoic/Cambrian paleomagnetic poles available for the Amazonian Craton, Laurentia and other West Gondwana blocks suggest that the Clymene Ocean separating these blocks has only closed at late Ediacaran to Cambrian times, after the Amazonian Craton rifted apart from Laurentia at ca. 570 Ma.Sociedade Brasileira de Geologia2016-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2317-48892016000200275Brazilian Journal of Geology v.46 n.2 2016reponame:Brazilian Journal of Geologyinstname:Sociedade Brasileira de Geologia (SBGEO)instacron:SBGEO10.1590/2317-4889201620160055info:eu-repo/semantics/openAccessD'Agrella-Filho,Manoel SouzaBispo-Santos,FranklinTrindade,Ricardo Ivan FerreiraAntonio,Paul Yves Jeaneng2016-08-03T00:00:00Zoai:scielo:S2317-48892016000200275Revistahttp://bjg.siteoficial.ws/index.htmhttps://old.scielo.br/oai/scielo-oai.phpsbgsede@sbgeo.org.br||claudio.riccomini@gmail.com2317-46922317-4692opendoar:2016-08-03T00:00Brazilian Journal of Geology - Sociedade Brasileira de Geologia (SBGEO)false
dc.title.none.fl_str_mv Paleomagnetism of the Amazonian Craton and its role in paleocontinents
title Paleomagnetism of the Amazonian Craton and its role in paleocontinents
spellingShingle Paleomagnetism of the Amazonian Craton and its role in paleocontinents
D'Agrella-Filho,Manoel Souza
Amazonian Craton
paleomagnetism
supercontinents
Columbia
Rodinia
Gondwana
title_short Paleomagnetism of the Amazonian Craton and its role in paleocontinents
title_full Paleomagnetism of the Amazonian Craton and its role in paleocontinents
title_fullStr Paleomagnetism of the Amazonian Craton and its role in paleocontinents
title_full_unstemmed Paleomagnetism of the Amazonian Craton and its role in paleocontinents
title_sort Paleomagnetism of the Amazonian Craton and its role in paleocontinents
author D'Agrella-Filho,Manoel Souza
author_facet D'Agrella-Filho,Manoel Souza
Bispo-Santos,Franklin
Trindade,Ricardo Ivan Ferreira
Antonio,Paul Yves Jean
author_role author
author2 Bispo-Santos,Franklin
Trindade,Ricardo Ivan Ferreira
Antonio,Paul Yves Jean
author2_role author
author
author
dc.contributor.author.fl_str_mv D'Agrella-Filho,Manoel Souza
Bispo-Santos,Franklin
Trindade,Ricardo Ivan Ferreira
Antonio,Paul Yves Jean
dc.subject.por.fl_str_mv Amazonian Craton
paleomagnetism
supercontinents
Columbia
Rodinia
Gondwana
topic Amazonian Craton
paleomagnetism
supercontinents
Columbia
Rodinia
Gondwana
description ABSTRACT: In the last decade, the participation of the Amazonian Craton on Precambrian supercontinents has been clarified thanks to a wealth of new paleomagnetic data. Paleo to Mesoproterozoic paleomagnetic data favored that the Amazonian Craton joined the Columbia supercontinent at 1780 Ma ago, in a scenario that resembled the South AMerica and BAltica (SAMBA) configuration. Then, the mismatch of paleomagnetic poles within the Craton implied that either dextral transcurrent movements occurred between Guiana and Brazil-Central Shield after 1400 Ma or internal rotation movements of the Amazonia-West African block took place between 1780 and 1400 Ma. The presently available late-Mesoproterozoic paleomagnetic data are compatible with two different scenarios for the Amazonian Craton in the Rodinia supercontinent. The first one involves an oblique collision of the Amazonian Craton with Laurentia at 1200 Ma ago, starting at the present-day Texas location, followed by transcurrent movements, until the final collision of the Amazonian Craton with Baltica at ca. 1000 Ma. The second one requires drifting of the Amazonian Craton and Baltica away from the other components of Columbia after 1260 Ma, followed by clockwise rotation and collision of these blocks with Laurentia along Grenvillian Belt at 1000 Ma. Finally, although the time Amazonian Craton collided with the Central African block is yet very disputed, the few late Neoproterozoic/Cambrian paleomagnetic poles available for the Amazonian Craton, Laurentia and other West Gondwana blocks suggest that the Clymene Ocean separating these blocks has only closed at late Ediacaran to Cambrian times, after the Amazonian Craton rifted apart from Laurentia at ca. 570 Ma.
publishDate 2016
dc.date.none.fl_str_mv 2016-06-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2317-48892016000200275
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2317-48892016000200275
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/2317-4889201620160055
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Geologia
publisher.none.fl_str_mv Sociedade Brasileira de Geologia
dc.source.none.fl_str_mv Brazilian Journal of Geology v.46 n.2 2016
reponame:Brazilian Journal of Geology
instname:Sociedade Brasileira de Geologia (SBGEO)
instacron:SBGEO
instname_str Sociedade Brasileira de Geologia (SBGEO)
instacron_str SBGEO
institution SBGEO
reponame_str Brazilian Journal of Geology
collection Brazilian Journal of Geology
repository.name.fl_str_mv Brazilian Journal of Geology - Sociedade Brasileira de Geologia (SBGEO)
repository.mail.fl_str_mv sbgsede@sbgeo.org.br||claudio.riccomini@gmail.com
_version_ 1752122398436491264