Characterization of a novel lipase from Bacillus sp. isolated from tannery wastes

Detalhes bibliográficos
Autor(a) principal: Ghori,M. I
Data de Publicação: 2011
Outros Autores: Iqbal,M. J, Hameed,A
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Brazilian Journal of Microbiology
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-83822011000100003
Resumo: Kinetics of a lipase isolated from Bacillus sp. was studied. The enzyme showed maximum activity at pH 9 and temperature 60ºC. The Michaelis constant (K M 0.31 µM) obtained from three different plots i.e., Lineweaver-Burk, Hanes-Wolf and Hofstee, was found to be lower than already reported lipases that confirmed higher affinity of the enzyme for its substrate p-NPL (p-nitrophenyl laurate). Vmax of the enzyme was found to be 7.6 µM/mL/min. Energy of activation calculated from Arrhenius plot was found to be 20.607 kJmol-1. Activation enthalpy (ΔH*) had negative trend and the value for the hydrolysis of p-NPL by the enzyme at optimum temperature was -2.748 kJmol-1 . Activation entropy (ΔS*) and free energy of activation (ΔG*) of the enzyme were found to be 1.468 Jmol-1K-1 and -3.237 kJmol-1, respectively at optimum temperature. Low value of Q10 (0.04788) shows high catalytic activity of the enzyme. Mn2+, Fe2+ and Mg2+ enhanced the lipase activity whereas Cu2+, Na+ and Co2+ inhibited the enzyme activity. However, the enzyme activity was not affected significantly by K+ ions. EDTA and SDS also significantly inhibited the lipase activity. Activity of the enzyme was increased in n-hexane while decreased with increase in concentration of acetone, chloroform, ethanol and isopropanol.
id SBM-1_6013f63a8aa34027467d31357ad63d28
oai_identifier_str oai:scielo:S1517-83822011000100003
network_acronym_str SBM-1
network_name_str Brazilian Journal of Microbiology
repository_id_str
spelling Characterization of a novel lipase from Bacillus sp. isolated from tannery wastesBacillus spKinetic studyLipasesp-Nitrophenyl laurateTannery wastesOrganic solventsKinetics of a lipase isolated from Bacillus sp. was studied. The enzyme showed maximum activity at pH 9 and temperature 60ºC. The Michaelis constant (K M 0.31 µM) obtained from three different plots i.e., Lineweaver-Burk, Hanes-Wolf and Hofstee, was found to be lower than already reported lipases that confirmed higher affinity of the enzyme for its substrate p-NPL (p-nitrophenyl laurate). Vmax of the enzyme was found to be 7.6 µM/mL/min. Energy of activation calculated from Arrhenius plot was found to be 20.607 kJmol-1. Activation enthalpy (ΔH*) had negative trend and the value for the hydrolysis of p-NPL by the enzyme at optimum temperature was -2.748 kJmol-1 . Activation entropy (ΔS*) and free energy of activation (ΔG*) of the enzyme were found to be 1.468 Jmol-1K-1 and -3.237 kJmol-1, respectively at optimum temperature. Low value of Q10 (0.04788) shows high catalytic activity of the enzyme. Mn2+, Fe2+ and Mg2+ enhanced the lipase activity whereas Cu2+, Na+ and Co2+ inhibited the enzyme activity. However, the enzyme activity was not affected significantly by K+ ions. EDTA and SDS also significantly inhibited the lipase activity. Activity of the enzyme was increased in n-hexane while decreased with increase in concentration of acetone, chloroform, ethanol and isopropanol.Sociedade Brasileira de Microbiologia2011-03-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-83822011000100003Brazilian Journal of Microbiology v.42 n.1 2011reponame:Brazilian Journal of Microbiologyinstname:Sociedade Brasileira de Microbiologia (SBM)instacron:SBM10.1590/S1517-83822011000100003info:eu-repo/semantics/openAccessGhori,M. IIqbal,M. JHameed,Aeng2011-01-10T00:00:00Zoai:scielo:S1517-83822011000100003Revistahttps://www.scielo.br/j/bjm/ONGhttps://old.scielo.br/oai/scielo-oai.phpbjm@sbmicrobiologia.org.br||mbmartin@usp.br1678-44051517-8382opendoar:2011-01-10T00:00Brazilian Journal of Microbiology - Sociedade Brasileira de Microbiologia (SBM)false
dc.title.none.fl_str_mv Characterization of a novel lipase from Bacillus sp. isolated from tannery wastes
title Characterization of a novel lipase from Bacillus sp. isolated from tannery wastes
spellingShingle Characterization of a novel lipase from Bacillus sp. isolated from tannery wastes
Ghori,M. I
Bacillus sp
Kinetic study
Lipases
p-Nitrophenyl laurate
Tannery wastes
Organic solvents
title_short Characterization of a novel lipase from Bacillus sp. isolated from tannery wastes
title_full Characterization of a novel lipase from Bacillus sp. isolated from tannery wastes
title_fullStr Characterization of a novel lipase from Bacillus sp. isolated from tannery wastes
title_full_unstemmed Characterization of a novel lipase from Bacillus sp. isolated from tannery wastes
title_sort Characterization of a novel lipase from Bacillus sp. isolated from tannery wastes
author Ghori,M. I
author_facet Ghori,M. I
Iqbal,M. J
Hameed,A
author_role author
author2 Iqbal,M. J
Hameed,A
author2_role author
author
dc.contributor.author.fl_str_mv Ghori,M. I
Iqbal,M. J
Hameed,A
dc.subject.por.fl_str_mv Bacillus sp
Kinetic study
Lipases
p-Nitrophenyl laurate
Tannery wastes
Organic solvents
topic Bacillus sp
Kinetic study
Lipases
p-Nitrophenyl laurate
Tannery wastes
Organic solvents
description Kinetics of a lipase isolated from Bacillus sp. was studied. The enzyme showed maximum activity at pH 9 and temperature 60ºC. The Michaelis constant (K M 0.31 µM) obtained from three different plots i.e., Lineweaver-Burk, Hanes-Wolf and Hofstee, was found to be lower than already reported lipases that confirmed higher affinity of the enzyme for its substrate p-NPL (p-nitrophenyl laurate). Vmax of the enzyme was found to be 7.6 µM/mL/min. Energy of activation calculated from Arrhenius plot was found to be 20.607 kJmol-1. Activation enthalpy (ΔH*) had negative trend and the value for the hydrolysis of p-NPL by the enzyme at optimum temperature was -2.748 kJmol-1 . Activation entropy (ΔS*) and free energy of activation (ΔG*) of the enzyme were found to be 1.468 Jmol-1K-1 and -3.237 kJmol-1, respectively at optimum temperature. Low value of Q10 (0.04788) shows high catalytic activity of the enzyme. Mn2+, Fe2+ and Mg2+ enhanced the lipase activity whereas Cu2+, Na+ and Co2+ inhibited the enzyme activity. However, the enzyme activity was not affected significantly by K+ ions. EDTA and SDS also significantly inhibited the lipase activity. Activity of the enzyme was increased in n-hexane while decreased with increase in concentration of acetone, chloroform, ethanol and isopropanol.
publishDate 2011
dc.date.none.fl_str_mv 2011-03-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-83822011000100003
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-83822011000100003
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S1517-83822011000100003
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Microbiologia
publisher.none.fl_str_mv Sociedade Brasileira de Microbiologia
dc.source.none.fl_str_mv Brazilian Journal of Microbiology v.42 n.1 2011
reponame:Brazilian Journal of Microbiology
instname:Sociedade Brasileira de Microbiologia (SBM)
instacron:SBM
instname_str Sociedade Brasileira de Microbiologia (SBM)
instacron_str SBM
institution SBM
reponame_str Brazilian Journal of Microbiology
collection Brazilian Journal of Microbiology
repository.name.fl_str_mv Brazilian Journal of Microbiology - Sociedade Brasileira de Microbiologia (SBM)
repository.mail.fl_str_mv bjm@sbmicrobiologia.org.br||mbmartin@usp.br
_version_ 1752122203440152576