Synthesis of structured triacylglycerols enriched in n-3 fatty acids by immobilized microbial lipase
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Brazilian Journal of Microbiology |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-83822016000401006 |
Resumo: | Abstract The search for new biocatalysts has aroused great interest due to the variety of micro-organisms and their role as enzyme producers. Native lipases from Aspergillus niger and Rhizopus javanicus were used to enrich the n-3 long-chain polyunsaturated fatty acids content in the triacylglycerols of soybean oil by acidolysis with free fatty acids from sardine oil in solvent-free media. For the immobilization process, the best lipase/support ratios were 1:3 (w/w) for Aspergillus niger lipase and 1:5 (w/w) for Rhizopus javanicus lipase using Amberlite MB-1. Both lipases maintained constant activity for 6 months at 4 °C. Reaction time, sardine-free fatty acids:soybean oil mole ratio and initial water content of the lipase were investigated to determine their effects on n-3 long-chain polyunsaturated fatty acids incorporation into soybean oil. Structured triacylglycerols with 11.7 and 7.2% of eicosapentaenoic acid + docosahexaenoic acid were obtained using Aspergillus niger lipase and Rhizopus javanicus lipase, decreasing the n-6/n-3 fatty acids ratio of soybean oil (11:1 to 3.5:1 and 4.7:1, respectively). The best reaction conditions were: initial water content of lipase of 0.86% (w/w), sardine-free faty acids:soybean oil mole ratio of 3:1 and reaction time of 36 h, at 40 °C. The significant factors for the acidolysis reaction were the sardine-free fatty acids:soybean oil mole ratio and reaction time. The characterization of structured triacylglycerols was obtained using easy ambient sonic-spray ionization mass spectrometry. The enzymatic reaction led to the formation of many structured triacylglycerols containing eicosapentaenoic acid, docosahexaenoic acid or both polyunsaturated fatty acids. |
id |
SBM-1_7c2c858af5c0cf605085dc4683191f41 |
---|---|
oai_identifier_str |
oai:scielo:S1517-83822016000401006 |
network_acronym_str |
SBM-1 |
network_name_str |
Brazilian Journal of Microbiology |
repository_id_str |
|
spelling |
Synthesis of structured triacylglycerols enriched in n-3 fatty acids by immobilized microbial lipaseLipaseImmobilizationSoybean oilPolyunsaturated fatty acidsAbstract The search for new biocatalysts has aroused great interest due to the variety of micro-organisms and their role as enzyme producers. Native lipases from Aspergillus niger and Rhizopus javanicus were used to enrich the n-3 long-chain polyunsaturated fatty acids content in the triacylglycerols of soybean oil by acidolysis with free fatty acids from sardine oil in solvent-free media. For the immobilization process, the best lipase/support ratios were 1:3 (w/w) for Aspergillus niger lipase and 1:5 (w/w) for Rhizopus javanicus lipase using Amberlite MB-1. Both lipases maintained constant activity for 6 months at 4 °C. Reaction time, sardine-free fatty acids:soybean oil mole ratio and initial water content of the lipase were investigated to determine their effects on n-3 long-chain polyunsaturated fatty acids incorporation into soybean oil. Structured triacylglycerols with 11.7 and 7.2% of eicosapentaenoic acid + docosahexaenoic acid were obtained using Aspergillus niger lipase and Rhizopus javanicus lipase, decreasing the n-6/n-3 fatty acids ratio of soybean oil (11:1 to 3.5:1 and 4.7:1, respectively). The best reaction conditions were: initial water content of lipase of 0.86% (w/w), sardine-free faty acids:soybean oil mole ratio of 3:1 and reaction time of 36 h, at 40 °C. The significant factors for the acidolysis reaction were the sardine-free fatty acids:soybean oil mole ratio and reaction time. The characterization of structured triacylglycerols was obtained using easy ambient sonic-spray ionization mass spectrometry. The enzymatic reaction led to the formation of many structured triacylglycerols containing eicosapentaenoic acid, docosahexaenoic acid or both polyunsaturated fatty acids.Sociedade Brasileira de Microbiologia2016-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-83822016000401006Brazilian Journal of Microbiology v.47 n.4 2016reponame:Brazilian Journal of Microbiologyinstname:Sociedade Brasileira de Microbiologia (SBM)instacron:SBM10.1016/j.bjm.2016.07.003info:eu-repo/semantics/openAccessAraújo,Maria Elisa Melo Branco deCampos,Paula Renata BuenoAlberto,Thiago GrandoContesini,Fabiano JaresCarvalho,Patrícia de Oliveiraeng2016-11-21T00:00:00Zoai:scielo:S1517-83822016000401006Revistahttps://www.scielo.br/j/bjm/ONGhttps://old.scielo.br/oai/scielo-oai.phpbjm@sbmicrobiologia.org.br||mbmartin@usp.br1678-44051517-8382opendoar:2016-11-21T00:00Brazilian Journal of Microbiology - Sociedade Brasileira de Microbiologia (SBM)false |
dc.title.none.fl_str_mv |
Synthesis of structured triacylglycerols enriched in n-3 fatty acids by immobilized microbial lipase |
title |
Synthesis of structured triacylglycerols enriched in n-3 fatty acids by immobilized microbial lipase |
spellingShingle |
Synthesis of structured triacylglycerols enriched in n-3 fatty acids by immobilized microbial lipase Araújo,Maria Elisa Melo Branco de Lipase Immobilization Soybean oil Polyunsaturated fatty acids |
title_short |
Synthesis of structured triacylglycerols enriched in n-3 fatty acids by immobilized microbial lipase |
title_full |
Synthesis of structured triacylglycerols enriched in n-3 fatty acids by immobilized microbial lipase |
title_fullStr |
Synthesis of structured triacylglycerols enriched in n-3 fatty acids by immobilized microbial lipase |
title_full_unstemmed |
Synthesis of structured triacylglycerols enriched in n-3 fatty acids by immobilized microbial lipase |
title_sort |
Synthesis of structured triacylglycerols enriched in n-3 fatty acids by immobilized microbial lipase |
author |
Araújo,Maria Elisa Melo Branco de |
author_facet |
Araújo,Maria Elisa Melo Branco de Campos,Paula Renata Bueno Alberto,Thiago Grando Contesini,Fabiano Jares Carvalho,Patrícia de Oliveira |
author_role |
author |
author2 |
Campos,Paula Renata Bueno Alberto,Thiago Grando Contesini,Fabiano Jares Carvalho,Patrícia de Oliveira |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Araújo,Maria Elisa Melo Branco de Campos,Paula Renata Bueno Alberto,Thiago Grando Contesini,Fabiano Jares Carvalho,Patrícia de Oliveira |
dc.subject.por.fl_str_mv |
Lipase Immobilization Soybean oil Polyunsaturated fatty acids |
topic |
Lipase Immobilization Soybean oil Polyunsaturated fatty acids |
description |
Abstract The search for new biocatalysts has aroused great interest due to the variety of micro-organisms and their role as enzyme producers. Native lipases from Aspergillus niger and Rhizopus javanicus were used to enrich the n-3 long-chain polyunsaturated fatty acids content in the triacylglycerols of soybean oil by acidolysis with free fatty acids from sardine oil in solvent-free media. For the immobilization process, the best lipase/support ratios were 1:3 (w/w) for Aspergillus niger lipase and 1:5 (w/w) for Rhizopus javanicus lipase using Amberlite MB-1. Both lipases maintained constant activity for 6 months at 4 °C. Reaction time, sardine-free fatty acids:soybean oil mole ratio and initial water content of the lipase were investigated to determine their effects on n-3 long-chain polyunsaturated fatty acids incorporation into soybean oil. Structured triacylglycerols with 11.7 and 7.2% of eicosapentaenoic acid + docosahexaenoic acid were obtained using Aspergillus niger lipase and Rhizopus javanicus lipase, decreasing the n-6/n-3 fatty acids ratio of soybean oil (11:1 to 3.5:1 and 4.7:1, respectively). The best reaction conditions were: initial water content of lipase of 0.86% (w/w), sardine-free faty acids:soybean oil mole ratio of 3:1 and reaction time of 36 h, at 40 °C. The significant factors for the acidolysis reaction were the sardine-free fatty acids:soybean oil mole ratio and reaction time. The characterization of structured triacylglycerols was obtained using easy ambient sonic-spray ionization mass spectrometry. The enzymatic reaction led to the formation of many structured triacylglycerols containing eicosapentaenoic acid, docosahexaenoic acid or both polyunsaturated fatty acids. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-12-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-83822016000401006 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-83822016000401006 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1016/j.bjm.2016.07.003 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Microbiologia |
publisher.none.fl_str_mv |
Sociedade Brasileira de Microbiologia |
dc.source.none.fl_str_mv |
Brazilian Journal of Microbiology v.47 n.4 2016 reponame:Brazilian Journal of Microbiology instname:Sociedade Brasileira de Microbiologia (SBM) instacron:SBM |
instname_str |
Sociedade Brasileira de Microbiologia (SBM) |
instacron_str |
SBM |
institution |
SBM |
reponame_str |
Brazilian Journal of Microbiology |
collection |
Brazilian Journal of Microbiology |
repository.name.fl_str_mv |
Brazilian Journal of Microbiology - Sociedade Brasileira de Microbiologia (SBM) |
repository.mail.fl_str_mv |
bjm@sbmicrobiologia.org.br||mbmartin@usp.br |
_version_ |
1752122208782647296 |