Carbazole degradation in the soil microcosm by tropical bacterial strains

Detalhes bibliográficos
Autor(a) principal: Salam,Lateef B.
Data de Publicação: 2015
Outros Autores: Ilori,Matthew O., Amund,Olukayode O.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Brazilian Journal of Microbiology
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-83822015000401037
Resumo: In a previous study, three bacterial strains isolated from tropical hydrocarbon-contaminated soils and phylogenetically identified as Achromobacter sp. strain SL1, Pseudomonas sp. strain SL4 and Microbacterium esteraromaticum strain SL6 displayed angular dioxygenation and mineralization of carbazole in batch cultures. In this study, the ability of these isolates to survive and enhance carbazole degradation in soil were tested in field-moist microcosms. Strain SL4 had the highest survival rate (1.8 x 107 cfu/g) after 30 days of incubation in sterilized soil, while there was a decrease in population density in native (unsterilized) soil when compared with the initial population. Gas chromatographic analysis after 30 days of incubation showed that in sterilized soil amended with carbazole (100 mg/kg), 66.96, 82.15 and 68.54% were degraded by strains SL1, SL4 and SL6, respectively, with rates of degradation of 0.093, 0.114 and 0.095 mg kg−1 h−1. The combination of the three isolates as inoculum in sterilized soil degraded 87.13% carbazole at a rate of 0.121 mg kg−1 h−1. In native soil amended with carbazole (100 mg/kg), 91.64, 87.29 and 89.13% were degraded by strains SL1, SL4 and SL6 after 30 days of incubation, with rates of degradation of 0.127, 0.121 and 0.124 mg kg−1 h−1, respectively. This study successfully established the survivability (> 106 cfu/g detected after 30 days) and carbazole-degrading ability of these bacterial strains in soil, and highlights the potential of these isolates as seed for the bioremediation of carbazole-impacted environments.
id SBM-1_9399f043d1eaa744a07e6635b420da04
oai_identifier_str oai:scielo:S1517-83822015000401037
network_acronym_str SBM-1
network_name_str Brazilian Journal of Microbiology
repository_id_str
spelling Carbazole degradation in the soil microcosm by tropical bacterial strainsbioaugmentationbiodegradationmicrocosmPseudomonasMicrobacteriumAchromobactercarbazoleIn a previous study, three bacterial strains isolated from tropical hydrocarbon-contaminated soils and phylogenetically identified as Achromobacter sp. strain SL1, Pseudomonas sp. strain SL4 and Microbacterium esteraromaticum strain SL6 displayed angular dioxygenation and mineralization of carbazole in batch cultures. In this study, the ability of these isolates to survive and enhance carbazole degradation in soil were tested in field-moist microcosms. Strain SL4 had the highest survival rate (1.8 x 107 cfu/g) after 30 days of incubation in sterilized soil, while there was a decrease in population density in native (unsterilized) soil when compared with the initial population. Gas chromatographic analysis after 30 days of incubation showed that in sterilized soil amended with carbazole (100 mg/kg), 66.96, 82.15 and 68.54% were degraded by strains SL1, SL4 and SL6, respectively, with rates of degradation of 0.093, 0.114 and 0.095 mg kg−1 h−1. The combination of the three isolates as inoculum in sterilized soil degraded 87.13% carbazole at a rate of 0.121 mg kg−1 h−1. In native soil amended with carbazole (100 mg/kg), 91.64, 87.29 and 89.13% were degraded by strains SL1, SL4 and SL6 after 30 days of incubation, with rates of degradation of 0.127, 0.121 and 0.124 mg kg−1 h−1, respectively. This study successfully established the survivability (> 106 cfu/g detected after 30 days) and carbazole-degrading ability of these bacterial strains in soil, and highlights the potential of these isolates as seed for the bioremediation of carbazole-impacted environments.Sociedade Brasileira de Microbiologia2015-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-83822015000401037Brazilian Journal of Microbiology v.46 n.4 2015reponame:Brazilian Journal of Microbiologyinstname:Sociedade Brasileira de Microbiologia (SBM)instacron:SBM10.1590/S1517-838246420140610info:eu-repo/semantics/openAccessSalam,Lateef B.Ilori,Matthew O.Amund,Olukayode O.eng2015-12-17T00:00:00Zoai:scielo:S1517-83822015000401037Revistahttps://www.scielo.br/j/bjm/ONGhttps://old.scielo.br/oai/scielo-oai.phpbjm@sbmicrobiologia.org.br||mbmartin@usp.br1678-44051517-8382opendoar:2015-12-17T00:00Brazilian Journal of Microbiology - Sociedade Brasileira de Microbiologia (SBM)false
dc.title.none.fl_str_mv Carbazole degradation in the soil microcosm by tropical bacterial strains
title Carbazole degradation in the soil microcosm by tropical bacterial strains
spellingShingle Carbazole degradation in the soil microcosm by tropical bacterial strains
Salam,Lateef B.
bioaugmentation
biodegradation
microcosm
Pseudomonas
Microbacterium
Achromobacter
carbazole
title_short Carbazole degradation in the soil microcosm by tropical bacterial strains
title_full Carbazole degradation in the soil microcosm by tropical bacterial strains
title_fullStr Carbazole degradation in the soil microcosm by tropical bacterial strains
title_full_unstemmed Carbazole degradation in the soil microcosm by tropical bacterial strains
title_sort Carbazole degradation in the soil microcosm by tropical bacterial strains
author Salam,Lateef B.
author_facet Salam,Lateef B.
Ilori,Matthew O.
Amund,Olukayode O.
author_role author
author2 Ilori,Matthew O.
Amund,Olukayode O.
author2_role author
author
dc.contributor.author.fl_str_mv Salam,Lateef B.
Ilori,Matthew O.
Amund,Olukayode O.
dc.subject.por.fl_str_mv bioaugmentation
biodegradation
microcosm
Pseudomonas
Microbacterium
Achromobacter
carbazole
topic bioaugmentation
biodegradation
microcosm
Pseudomonas
Microbacterium
Achromobacter
carbazole
description In a previous study, three bacterial strains isolated from tropical hydrocarbon-contaminated soils and phylogenetically identified as Achromobacter sp. strain SL1, Pseudomonas sp. strain SL4 and Microbacterium esteraromaticum strain SL6 displayed angular dioxygenation and mineralization of carbazole in batch cultures. In this study, the ability of these isolates to survive and enhance carbazole degradation in soil were tested in field-moist microcosms. Strain SL4 had the highest survival rate (1.8 x 107 cfu/g) after 30 days of incubation in sterilized soil, while there was a decrease in population density in native (unsterilized) soil when compared with the initial population. Gas chromatographic analysis after 30 days of incubation showed that in sterilized soil amended with carbazole (100 mg/kg), 66.96, 82.15 and 68.54% were degraded by strains SL1, SL4 and SL6, respectively, with rates of degradation of 0.093, 0.114 and 0.095 mg kg−1 h−1. The combination of the three isolates as inoculum in sterilized soil degraded 87.13% carbazole at a rate of 0.121 mg kg−1 h−1. In native soil amended with carbazole (100 mg/kg), 91.64, 87.29 and 89.13% were degraded by strains SL1, SL4 and SL6 after 30 days of incubation, with rates of degradation of 0.127, 0.121 and 0.124 mg kg−1 h−1, respectively. This study successfully established the survivability (> 106 cfu/g detected after 30 days) and carbazole-degrading ability of these bacterial strains in soil, and highlights the potential of these isolates as seed for the bioremediation of carbazole-impacted environments.
publishDate 2015
dc.date.none.fl_str_mv 2015-12-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-83822015000401037
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-83822015000401037
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S1517-838246420140610
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Microbiologia
publisher.none.fl_str_mv Sociedade Brasileira de Microbiologia
dc.source.none.fl_str_mv Brazilian Journal of Microbiology v.46 n.4 2015
reponame:Brazilian Journal of Microbiology
instname:Sociedade Brasileira de Microbiologia (SBM)
instacron:SBM
instname_str Sociedade Brasileira de Microbiologia (SBM)
instacron_str SBM
institution SBM
reponame_str Brazilian Journal of Microbiology
collection Brazilian Journal of Microbiology
repository.name.fl_str_mv Brazilian Journal of Microbiology - Sociedade Brasileira de Microbiologia (SBM)
repository.mail.fl_str_mv bjm@sbmicrobiologia.org.br||mbmartin@usp.br
_version_ 1752122207966855168