Antimicrobial activity and acetylcholinesterase inhibition by extracts from chromatin modulated fungi
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Brazilian Journal of Microbiology |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-83822018000100169 |
Resumo: | ABSTRACT Major health challenges as the increasing number of cases of infections by antibiotic multiresistant microorganisms and cases of Alzheimer's disease have led to searching new control drugs. The present study aims to verify a new way of obtaining bioactive extracts from filamentous fungi with potential antimicrobial and acetylcholinesterase inhibitory activities, using epigenetic modulation to promote the expression of genes commonly silenced. For such finality, five filamentous fungal species (Talaromyces funiculosus, Talaromyces islandicus, Talaromyces minioluteus, Talaromyces pinophilus, Penicillium janthinellum) were grown or not with DNA methyltransferases inhibitors (procainamide or hydralazine) and/or a histone deacetylase inhibitor (suberohydroxamic acid). Extracts from T. islandicus cultured or not with hydralazine inhibited Listeria monocytogenes growth in 57.66 ± 5.98% and 15.38 ± 1.99%, respectively. Increment in inhibition of acetylcholinesterase activity was observed for the extract from P. janthinellum grown with procainamide (100%), when compared to the control extract (39.62 ± 3.76%). Similarly, inhibition of acetylcholinesterase activity increased from 20.91 ± 3.90% (control) to 92.20 ± 3.72% when the tested extract was obtained from T. pinophilus under a combination of suberohydroxamic acid and procainamide. Concluding, increases in antimicrobial activity and acetylcholinesterase inhibition were observed when fungal extracts in the presence of DNA methyltransferases and/or histone deacetylase modulators were tested. |
id |
SBM-1_9b2c649c9926cd2d525711680e444d01 |
---|---|
oai_identifier_str |
oai:scielo:S1517-83822018000100169 |
network_acronym_str |
SBM-1 |
network_name_str |
Brazilian Journal of Microbiology |
repository_id_str |
|
spelling |
Antimicrobial activity and acetylcholinesterase inhibition by extracts from chromatin modulated fungiAntimicrobial activityAcetylcholinesterase inhibitionEpigenetic modulationPenicillium sp.Talaromyces sp.ABSTRACT Major health challenges as the increasing number of cases of infections by antibiotic multiresistant microorganisms and cases of Alzheimer's disease have led to searching new control drugs. The present study aims to verify a new way of obtaining bioactive extracts from filamentous fungi with potential antimicrobial and acetylcholinesterase inhibitory activities, using epigenetic modulation to promote the expression of genes commonly silenced. For such finality, five filamentous fungal species (Talaromyces funiculosus, Talaromyces islandicus, Talaromyces minioluteus, Talaromyces pinophilus, Penicillium janthinellum) were grown or not with DNA methyltransferases inhibitors (procainamide or hydralazine) and/or a histone deacetylase inhibitor (suberohydroxamic acid). Extracts from T. islandicus cultured or not with hydralazine inhibited Listeria monocytogenes growth in 57.66 ± 5.98% and 15.38 ± 1.99%, respectively. Increment in inhibition of acetylcholinesterase activity was observed for the extract from P. janthinellum grown with procainamide (100%), when compared to the control extract (39.62 ± 3.76%). Similarly, inhibition of acetylcholinesterase activity increased from 20.91 ± 3.90% (control) to 92.20 ± 3.72% when the tested extract was obtained from T. pinophilus under a combination of suberohydroxamic acid and procainamide. Concluding, increases in antimicrobial activity and acetylcholinesterase inhibition were observed when fungal extracts in the presence of DNA methyltransferases and/or histone deacetylase modulators were tested.Sociedade Brasileira de Microbiologia2018-03-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-83822018000100169Brazilian Journal of Microbiology v.49 n.1 2018reponame:Brazilian Journal of Microbiologyinstname:Sociedade Brasileira de Microbiologia (SBM)instacron:SBM10.1016/j.bjm.2017.06.004info:eu-repo/semantics/openAccessLima,Matheus Thomaz Nogueira SilvaSantos,Larissa Batista dosBastos,Rafael WesleyNicoli,Jacques RobertTakahashi,Jacqueline Aparecidaeng2018-02-20T00:00:00Zoai:scielo:S1517-83822018000100169Revistahttps://www.scielo.br/j/bjm/ONGhttps://old.scielo.br/oai/scielo-oai.phpbjm@sbmicrobiologia.org.br||mbmartin@usp.br1678-44051517-8382opendoar:2018-02-20T00:00Brazilian Journal of Microbiology - Sociedade Brasileira de Microbiologia (SBM)false |
dc.title.none.fl_str_mv |
Antimicrobial activity and acetylcholinesterase inhibition by extracts from chromatin modulated fungi |
title |
Antimicrobial activity and acetylcholinesterase inhibition by extracts from chromatin modulated fungi |
spellingShingle |
Antimicrobial activity and acetylcholinesterase inhibition by extracts from chromatin modulated fungi Lima,Matheus Thomaz Nogueira Silva Antimicrobial activity Acetylcholinesterase inhibition Epigenetic modulation Penicillium sp. Talaromyces sp. |
title_short |
Antimicrobial activity and acetylcholinesterase inhibition by extracts from chromatin modulated fungi |
title_full |
Antimicrobial activity and acetylcholinesterase inhibition by extracts from chromatin modulated fungi |
title_fullStr |
Antimicrobial activity and acetylcholinesterase inhibition by extracts from chromatin modulated fungi |
title_full_unstemmed |
Antimicrobial activity and acetylcholinesterase inhibition by extracts from chromatin modulated fungi |
title_sort |
Antimicrobial activity and acetylcholinesterase inhibition by extracts from chromatin modulated fungi |
author |
Lima,Matheus Thomaz Nogueira Silva |
author_facet |
Lima,Matheus Thomaz Nogueira Silva Santos,Larissa Batista dos Bastos,Rafael Wesley Nicoli,Jacques Robert Takahashi,Jacqueline Aparecida |
author_role |
author |
author2 |
Santos,Larissa Batista dos Bastos,Rafael Wesley Nicoli,Jacques Robert Takahashi,Jacqueline Aparecida |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Lima,Matheus Thomaz Nogueira Silva Santos,Larissa Batista dos Bastos,Rafael Wesley Nicoli,Jacques Robert Takahashi,Jacqueline Aparecida |
dc.subject.por.fl_str_mv |
Antimicrobial activity Acetylcholinesterase inhibition Epigenetic modulation Penicillium sp. Talaromyces sp. |
topic |
Antimicrobial activity Acetylcholinesterase inhibition Epigenetic modulation Penicillium sp. Talaromyces sp. |
description |
ABSTRACT Major health challenges as the increasing number of cases of infections by antibiotic multiresistant microorganisms and cases of Alzheimer's disease have led to searching new control drugs. The present study aims to verify a new way of obtaining bioactive extracts from filamentous fungi with potential antimicrobial and acetylcholinesterase inhibitory activities, using epigenetic modulation to promote the expression of genes commonly silenced. For such finality, five filamentous fungal species (Talaromyces funiculosus, Talaromyces islandicus, Talaromyces minioluteus, Talaromyces pinophilus, Penicillium janthinellum) were grown or not with DNA methyltransferases inhibitors (procainamide or hydralazine) and/or a histone deacetylase inhibitor (suberohydroxamic acid). Extracts from T. islandicus cultured or not with hydralazine inhibited Listeria monocytogenes growth in 57.66 ± 5.98% and 15.38 ± 1.99%, respectively. Increment in inhibition of acetylcholinesterase activity was observed for the extract from P. janthinellum grown with procainamide (100%), when compared to the control extract (39.62 ± 3.76%). Similarly, inhibition of acetylcholinesterase activity increased from 20.91 ± 3.90% (control) to 92.20 ± 3.72% when the tested extract was obtained from T. pinophilus under a combination of suberohydroxamic acid and procainamide. Concluding, increases in antimicrobial activity and acetylcholinesterase inhibition were observed when fungal extracts in the presence of DNA methyltransferases and/or histone deacetylase modulators were tested. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-03-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-83822018000100169 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-83822018000100169 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1016/j.bjm.2017.06.004 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Microbiologia |
publisher.none.fl_str_mv |
Sociedade Brasileira de Microbiologia |
dc.source.none.fl_str_mv |
Brazilian Journal of Microbiology v.49 n.1 2018 reponame:Brazilian Journal of Microbiology instname:Sociedade Brasileira de Microbiologia (SBM) instacron:SBM |
instname_str |
Sociedade Brasileira de Microbiologia (SBM) |
instacron_str |
SBM |
institution |
SBM |
reponame_str |
Brazilian Journal of Microbiology |
collection |
Brazilian Journal of Microbiology |
repository.name.fl_str_mv |
Brazilian Journal of Microbiology - Sociedade Brasileira de Microbiologia (SBM) |
repository.mail.fl_str_mv |
bjm@sbmicrobiologia.org.br||mbmartin@usp.br |
_version_ |
1752122209319518208 |