Production and properties of an extracellular protease from thermophilic Bacillus sp
Autor(a) principal: | |
---|---|
Data de Publicação: | 2004 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Brazilian Journal of Microbiology |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-83822004000100015 |
Resumo: | Protease production by thermophilic Bacillus sp strain SMIA-2 cultivated in liquid cultures containing trisodium citrate reached a maximum in 9h, with levels of 1.93U/mg protein. The microorganism utilized several carbon sources for the production of protease. Starch was the best substrate, followed by trisodium citrate, citric acid and sucrose. Among the various organic and inorganic nitrogen sources, ammonium nitrate was found to be the best. Studies on the protease characterization revealed that the optimum temperature of this enzyme was 60ºC. The enzyme was stable for 2h at 30ºC, while at 40ºC and 80ºC, 14% and 84% of the original activities were lost, respectively. The optimum pH of the enzyme was found to be 8.0. After incubation of crude enzyme solution for 24h at pH 5.5, 8.0 and 9.0, a decrease of about 51%, 18% and 66% of its original activity was observed respectively. A stronger inhibitory effect was observed in the presence of K+, Hg2+and Cu2+. Hg+ resulted in the complete loss of activity at 1mM concentrations. Activity was stimulated by Mn2+ and Ca+2, indicating that these ions had a functional role in the molecular structure of the enzyme. |
id |
SBM-1_b8ea122da1bed39e338b211f83241153 |
---|---|
oai_identifier_str |
oai:scielo:S1517-83822004000100015 |
network_acronym_str |
SBM-1 |
network_name_str |
Brazilian Journal of Microbiology |
repository_id_str |
|
spelling |
Production and properties of an extracellular protease from thermophilic Bacillus spproteasethermophilic bacteriumBacillus sp.Protease production by thermophilic Bacillus sp strain SMIA-2 cultivated in liquid cultures containing trisodium citrate reached a maximum in 9h, with levels of 1.93U/mg protein. The microorganism utilized several carbon sources for the production of protease. Starch was the best substrate, followed by trisodium citrate, citric acid and sucrose. Among the various organic and inorganic nitrogen sources, ammonium nitrate was found to be the best. Studies on the protease characterization revealed that the optimum temperature of this enzyme was 60ºC. The enzyme was stable for 2h at 30ºC, while at 40ºC and 80ºC, 14% and 84% of the original activities were lost, respectively. The optimum pH of the enzyme was found to be 8.0. After incubation of crude enzyme solution for 24h at pH 5.5, 8.0 and 9.0, a decrease of about 51%, 18% and 66% of its original activity was observed respectively. A stronger inhibitory effect was observed in the presence of K+, Hg2+and Cu2+. Hg+ resulted in the complete loss of activity at 1mM concentrations. Activity was stimulated by Mn2+ and Ca+2, indicating that these ions had a functional role in the molecular structure of the enzyme.Sociedade Brasileira de Microbiologia2004-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-83822004000100015Brazilian Journal of Microbiology v.35 n.1-2 2004reponame:Brazilian Journal of Microbiologyinstname:Sociedade Brasileira de Microbiologia (SBM)instacron:SBM10.1590/S1517-83822004000100015info:eu-repo/semantics/openAccessNascimento,Wellingta Cristina Almeida doMartins,Meire Lelis Lealeng2004-11-16T00:00:00Zoai:scielo:S1517-83822004000100015Revistahttps://www.scielo.br/j/bjm/ONGhttps://old.scielo.br/oai/scielo-oai.phpbjm@sbmicrobiologia.org.br||mbmartin@usp.br1678-44051517-8382opendoar:2004-11-16T00:00Brazilian Journal of Microbiology - Sociedade Brasileira de Microbiologia (SBM)false |
dc.title.none.fl_str_mv |
Production and properties of an extracellular protease from thermophilic Bacillus sp |
title |
Production and properties of an extracellular protease from thermophilic Bacillus sp |
spellingShingle |
Production and properties of an extracellular protease from thermophilic Bacillus sp Nascimento,Wellingta Cristina Almeida do protease thermophilic bacterium Bacillus sp. |
title_short |
Production and properties of an extracellular protease from thermophilic Bacillus sp |
title_full |
Production and properties of an extracellular protease from thermophilic Bacillus sp |
title_fullStr |
Production and properties of an extracellular protease from thermophilic Bacillus sp |
title_full_unstemmed |
Production and properties of an extracellular protease from thermophilic Bacillus sp |
title_sort |
Production and properties of an extracellular protease from thermophilic Bacillus sp |
author |
Nascimento,Wellingta Cristina Almeida do |
author_facet |
Nascimento,Wellingta Cristina Almeida do Martins,Meire Lelis Leal |
author_role |
author |
author2 |
Martins,Meire Lelis Leal |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Nascimento,Wellingta Cristina Almeida do Martins,Meire Lelis Leal |
dc.subject.por.fl_str_mv |
protease thermophilic bacterium Bacillus sp. |
topic |
protease thermophilic bacterium Bacillus sp. |
description |
Protease production by thermophilic Bacillus sp strain SMIA-2 cultivated in liquid cultures containing trisodium citrate reached a maximum in 9h, with levels of 1.93U/mg protein. The microorganism utilized several carbon sources for the production of protease. Starch was the best substrate, followed by trisodium citrate, citric acid and sucrose. Among the various organic and inorganic nitrogen sources, ammonium nitrate was found to be the best. Studies on the protease characterization revealed that the optimum temperature of this enzyme was 60ºC. The enzyme was stable for 2h at 30ºC, while at 40ºC and 80ºC, 14% and 84% of the original activities were lost, respectively. The optimum pH of the enzyme was found to be 8.0. After incubation of crude enzyme solution for 24h at pH 5.5, 8.0 and 9.0, a decrease of about 51%, 18% and 66% of its original activity was observed respectively. A stronger inhibitory effect was observed in the presence of K+, Hg2+and Cu2+. Hg+ resulted in the complete loss of activity at 1mM concentrations. Activity was stimulated by Mn2+ and Ca+2, indicating that these ions had a functional role in the molecular structure of the enzyme. |
publishDate |
2004 |
dc.date.none.fl_str_mv |
2004-06-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-83822004000100015 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-83822004000100015 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S1517-83822004000100015 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Microbiologia |
publisher.none.fl_str_mv |
Sociedade Brasileira de Microbiologia |
dc.source.none.fl_str_mv |
Brazilian Journal of Microbiology v.35 n.1-2 2004 reponame:Brazilian Journal of Microbiology instname:Sociedade Brasileira de Microbiologia (SBM) instacron:SBM |
instname_str |
Sociedade Brasileira de Microbiologia (SBM) |
instacron_str |
SBM |
institution |
SBM |
reponame_str |
Brazilian Journal of Microbiology |
collection |
Brazilian Journal of Microbiology |
repository.name.fl_str_mv |
Brazilian Journal of Microbiology - Sociedade Brasileira de Microbiologia (SBM) |
repository.mail.fl_str_mv |
bjm@sbmicrobiologia.org.br||mbmartin@usp.br |
_version_ |
1752122200079466496 |