Isolation and identification by 16S rRNA sequence analysis of plant growth-promoting azospirilla from the rhizosphere of wheat
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Brazilian Journal of Microbiology |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-83822016000300542 |
Resumo: | ABSTRACT The main objective of the present study was to isolate phytohormone-producing, phosphate-solubilizing strains of Azospirillum from wheat to be used as inoculants for plant growth promotion. Five Azospirillum strains were isolated from the rhizosphere of field-grown wheat (Triticum aestivum L.), and it was confirmed by BOX-polymerase chain reaction (PCR) that the isolates were different and not re-isolates of the same strain. Sequence analysis of the PCR-amplified 16S rRNA gene indicated that four isolates showed maximum similarity to Azospirillum brasilense and one isolate showed maximum similarity to Azospirillum zeae. This is the first report indicating the presence of an A. zeae like isolate in the wheat rhizosphere in Pakistan. The bacterial isolates were characterized for their plant growth-promoting traits, phosphate solubilization, and indole-3-acetic acid (IAA) production. None of the isolates showed phosphate solubilization activity in the commonly used Pikovskaya medium. However, all strains (except AzoK4) exhibited ability to solubilize tricalcium phosphate (TCP) in modified Pikovskaya medium in which sucrose was replaced by Na-malate, as well as in TCP-supplemented Luria-Bertani (LB) medium. Organic acids, such as acetic, citric, lactic, malic, and succinic acids, were detected in culture supernatants of the tested Azospirillum strains. All strains exhibited ability to produce IAA in the growth medium, except Azospirillum sp. AzoK1. Among the strains tested, the maximum IAA production (30.49 ± 1.04 mg L-1) and phosphate solubilization (105.50 ± 4.93 mg L-1) were shown by a pure culture of Azospirillum sp. AzoK2. In pot experiments, single-strain inocula of Azospirillum sp. AzoK1 and AzoK2 improved wheat plant growth. |
id |
SBM-1_f26eef98a677383c212dbaea3bec902f |
---|---|
oai_identifier_str |
oai:scielo:S1517-83822016000300542 |
network_acronym_str |
SBM-1 |
network_name_str |
Brazilian Journal of Microbiology |
repository_id_str |
|
spelling |
Isolation and identification by 16S rRNA sequence analysis of plant growth-promoting azospirilla from the rhizosphere of wheatAzospirillum brasilenseAzospirillum zeaeBOX-PCRIndole-3-acetic acid (IAA) productionPhosphate solubilizationABSTRACT The main objective of the present study was to isolate phytohormone-producing, phosphate-solubilizing strains of Azospirillum from wheat to be used as inoculants for plant growth promotion. Five Azospirillum strains were isolated from the rhizosphere of field-grown wheat (Triticum aestivum L.), and it was confirmed by BOX-polymerase chain reaction (PCR) that the isolates were different and not re-isolates of the same strain. Sequence analysis of the PCR-amplified 16S rRNA gene indicated that four isolates showed maximum similarity to Azospirillum brasilense and one isolate showed maximum similarity to Azospirillum zeae. This is the first report indicating the presence of an A. zeae like isolate in the wheat rhizosphere in Pakistan. The bacterial isolates were characterized for their plant growth-promoting traits, phosphate solubilization, and indole-3-acetic acid (IAA) production. None of the isolates showed phosphate solubilization activity in the commonly used Pikovskaya medium. However, all strains (except AzoK4) exhibited ability to solubilize tricalcium phosphate (TCP) in modified Pikovskaya medium in which sucrose was replaced by Na-malate, as well as in TCP-supplemented Luria-Bertani (LB) medium. Organic acids, such as acetic, citric, lactic, malic, and succinic acids, were detected in culture supernatants of the tested Azospirillum strains. All strains exhibited ability to produce IAA in the growth medium, except Azospirillum sp. AzoK1. Among the strains tested, the maximum IAA production (30.49 ± 1.04 mg L-1) and phosphate solubilization (105.50 ± 4.93 mg L-1) were shown by a pure culture of Azospirillum sp. AzoK2. In pot experiments, single-strain inocula of Azospirillum sp. AzoK1 and AzoK2 improved wheat plant growth.Sociedade Brasileira de Microbiologia2016-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-83822016000300542Brazilian Journal of Microbiology v.47 n.3 2016reponame:Brazilian Journal of Microbiologyinstname:Sociedade Brasileira de Microbiologia (SBM)instacron:SBM10.1016/j.bjm.2015.11.035info:eu-repo/semantics/openAccessAyyaz,KhadijaZaheer,AhmadRasul,GhulamMirza,Muhammad Sajjadeng2016-08-02T00:00:00Zoai:scielo:S1517-83822016000300542Revistahttps://www.scielo.br/j/bjm/ONGhttps://old.scielo.br/oai/scielo-oai.phpbjm@sbmicrobiologia.org.br||mbmartin@usp.br1678-44051517-8382opendoar:2016-08-02T00:00Brazilian Journal of Microbiology - Sociedade Brasileira de Microbiologia (SBM)false |
dc.title.none.fl_str_mv |
Isolation and identification by 16S rRNA sequence analysis of plant growth-promoting azospirilla from the rhizosphere of wheat |
title |
Isolation and identification by 16S rRNA sequence analysis of plant growth-promoting azospirilla from the rhizosphere of wheat |
spellingShingle |
Isolation and identification by 16S rRNA sequence analysis of plant growth-promoting azospirilla from the rhizosphere of wheat Ayyaz,Khadija Azospirillum brasilense Azospirillum zeae BOX-PCR Indole-3-acetic acid (IAA) production Phosphate solubilization |
title_short |
Isolation and identification by 16S rRNA sequence analysis of plant growth-promoting azospirilla from the rhizosphere of wheat |
title_full |
Isolation and identification by 16S rRNA sequence analysis of plant growth-promoting azospirilla from the rhizosphere of wheat |
title_fullStr |
Isolation and identification by 16S rRNA sequence analysis of plant growth-promoting azospirilla from the rhizosphere of wheat |
title_full_unstemmed |
Isolation and identification by 16S rRNA sequence analysis of plant growth-promoting azospirilla from the rhizosphere of wheat |
title_sort |
Isolation and identification by 16S rRNA sequence analysis of plant growth-promoting azospirilla from the rhizosphere of wheat |
author |
Ayyaz,Khadija |
author_facet |
Ayyaz,Khadija Zaheer,Ahmad Rasul,Ghulam Mirza,Muhammad Sajjad |
author_role |
author |
author2 |
Zaheer,Ahmad Rasul,Ghulam Mirza,Muhammad Sajjad |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Ayyaz,Khadija Zaheer,Ahmad Rasul,Ghulam Mirza,Muhammad Sajjad |
dc.subject.por.fl_str_mv |
Azospirillum brasilense Azospirillum zeae BOX-PCR Indole-3-acetic acid (IAA) production Phosphate solubilization |
topic |
Azospirillum brasilense Azospirillum zeae BOX-PCR Indole-3-acetic acid (IAA) production Phosphate solubilization |
description |
ABSTRACT The main objective of the present study was to isolate phytohormone-producing, phosphate-solubilizing strains of Azospirillum from wheat to be used as inoculants for plant growth promotion. Five Azospirillum strains were isolated from the rhizosphere of field-grown wheat (Triticum aestivum L.), and it was confirmed by BOX-polymerase chain reaction (PCR) that the isolates were different and not re-isolates of the same strain. Sequence analysis of the PCR-amplified 16S rRNA gene indicated that four isolates showed maximum similarity to Azospirillum brasilense and one isolate showed maximum similarity to Azospirillum zeae. This is the first report indicating the presence of an A. zeae like isolate in the wheat rhizosphere in Pakistan. The bacterial isolates were characterized for their plant growth-promoting traits, phosphate solubilization, and indole-3-acetic acid (IAA) production. None of the isolates showed phosphate solubilization activity in the commonly used Pikovskaya medium. However, all strains (except AzoK4) exhibited ability to solubilize tricalcium phosphate (TCP) in modified Pikovskaya medium in which sucrose was replaced by Na-malate, as well as in TCP-supplemented Luria-Bertani (LB) medium. Organic acids, such as acetic, citric, lactic, malic, and succinic acids, were detected in culture supernatants of the tested Azospirillum strains. All strains exhibited ability to produce IAA in the growth medium, except Azospirillum sp. AzoK1. Among the strains tested, the maximum IAA production (30.49 ± 1.04 mg L-1) and phosphate solubilization (105.50 ± 4.93 mg L-1) were shown by a pure culture of Azospirillum sp. AzoK2. In pot experiments, single-strain inocula of Azospirillum sp. AzoK1 and AzoK2 improved wheat plant growth. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-09-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-83822016000300542 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-83822016000300542 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1016/j.bjm.2015.11.035 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Microbiologia |
publisher.none.fl_str_mv |
Sociedade Brasileira de Microbiologia |
dc.source.none.fl_str_mv |
Brazilian Journal of Microbiology v.47 n.3 2016 reponame:Brazilian Journal of Microbiology instname:Sociedade Brasileira de Microbiologia (SBM) instacron:SBM |
instname_str |
Sociedade Brasileira de Microbiologia (SBM) |
instacron_str |
SBM |
institution |
SBM |
reponame_str |
Brazilian Journal of Microbiology |
collection |
Brazilian Journal of Microbiology |
repository.name.fl_str_mv |
Brazilian Journal of Microbiology - Sociedade Brasileira de Microbiologia (SBM) |
repository.mail.fl_str_mv |
bjm@sbmicrobiologia.org.br||mbmartin@usp.br |
_version_ |
1752122208415645696 |