Apnea Recognition with Wavelet Neural Networks

Detalhes bibliográficos
Autor(a) principal: ZANIOL,C.
Data de Publicação: 2018
Outros Autores: VARRIALE,M.C., MANICA,E.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512018000200277
Resumo: ABSTRACT Apnea is a Sleep Disorder Syndrome characterized by an interruption or reduction of air flow for at least 10 seconds. Polysomnography is a test used to apnea diagnosis. Several signals, including Electrocardiogram (ECG), Electroencephalogram (EEG) and Oxygen Saturation (SpO 2) are obtained in this diagnostic test. Since most tests for apnea are uncomfortable to the patients, there is an increase search for alternative methods to reduce cost and improve patient well-being. In this work, we use only SpO 2 data from 25 patients of the St Vincent’s University Hospital, Dublin, to extract parameters connected to a Neural Network to classify patients with apnea or non-apnea. Results confirm that our alternative method can be used as an auxiliary tool for diagnosis by using exclusively SpO 2 signal.
id SBMAC-1_03c9487147b3edfa3b30daba86c8195e
oai_identifier_str oai:scielo:S2179-84512018000200277
network_acronym_str SBMAC-1
network_name_str TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
repository_id_str
spelling Apnea Recognition with Wavelet Neural NetworksNeural NetworkSleep Disorder SyndromeApneaABSTRACT Apnea is a Sleep Disorder Syndrome characterized by an interruption or reduction of air flow for at least 10 seconds. Polysomnography is a test used to apnea diagnosis. Several signals, including Electrocardiogram (ECG), Electroencephalogram (EEG) and Oxygen Saturation (SpO 2) are obtained in this diagnostic test. Since most tests for apnea are uncomfortable to the patients, there is an increase search for alternative methods to reduce cost and improve patient well-being. In this work, we use only SpO 2 data from 25 patients of the St Vincent’s University Hospital, Dublin, to extract parameters connected to a Neural Network to classify patients with apnea or non-apnea. Results confirm that our alternative method can be used as an auxiliary tool for diagnosis by using exclusively SpO 2 signal.Sociedade Brasileira de Matemática Aplicada e Computacional2018-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512018000200277TEMA (São Carlos) v.19 n.2 2018reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)instname:Sociedade Brasileira de Matemática Aplicada e Computacionalinstacron:SBMAC10.5540/tema.2018.019.02.0277info:eu-repo/semantics/openAccessZANIOL,C.VARRIALE,M.C.MANICA,E.eng2018-09-10T00:00:00Zoai:scielo:S2179-84512018000200277Revistahttp://www.scielo.br/temaPUBhttps://old.scielo.br/oai/scielo-oai.phpcastelo@icmc.usp.br2179-84511677-1966opendoar:2018-09-10T00:00TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacionalfalse
dc.title.none.fl_str_mv Apnea Recognition with Wavelet Neural Networks
title Apnea Recognition with Wavelet Neural Networks
spellingShingle Apnea Recognition with Wavelet Neural Networks
ZANIOL,C.
Neural Network
Sleep Disorder Syndrome
Apnea
title_short Apnea Recognition with Wavelet Neural Networks
title_full Apnea Recognition with Wavelet Neural Networks
title_fullStr Apnea Recognition with Wavelet Neural Networks
title_full_unstemmed Apnea Recognition with Wavelet Neural Networks
title_sort Apnea Recognition with Wavelet Neural Networks
author ZANIOL,C.
author_facet ZANIOL,C.
VARRIALE,M.C.
MANICA,E.
author_role author
author2 VARRIALE,M.C.
MANICA,E.
author2_role author
author
dc.contributor.author.fl_str_mv ZANIOL,C.
VARRIALE,M.C.
MANICA,E.
dc.subject.por.fl_str_mv Neural Network
Sleep Disorder Syndrome
Apnea
topic Neural Network
Sleep Disorder Syndrome
Apnea
description ABSTRACT Apnea is a Sleep Disorder Syndrome characterized by an interruption or reduction of air flow for at least 10 seconds. Polysomnography is a test used to apnea diagnosis. Several signals, including Electrocardiogram (ECG), Electroencephalogram (EEG) and Oxygen Saturation (SpO 2) are obtained in this diagnostic test. Since most tests for apnea are uncomfortable to the patients, there is an increase search for alternative methods to reduce cost and improve patient well-being. In this work, we use only SpO 2 data from 25 patients of the St Vincent’s University Hospital, Dublin, to extract parameters connected to a Neural Network to classify patients with apnea or non-apnea. Results confirm that our alternative method can be used as an auxiliary tool for diagnosis by using exclusively SpO 2 signal.
publishDate 2018
dc.date.none.fl_str_mv 2018-08-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512018000200277
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512018000200277
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.5540/tema.2018.019.02.0277
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
dc.source.none.fl_str_mv TEMA (São Carlos) v.19 n.2 2018
reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
instname:Sociedade Brasileira de Matemática Aplicada e Computacional
instacron:SBMAC
instname_str Sociedade Brasileira de Matemática Aplicada e Computacional
instacron_str SBMAC
institution SBMAC
reponame_str TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
collection TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
repository.name.fl_str_mv TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacional
repository.mail.fl_str_mv castelo@icmc.usp.br
_version_ 1752122220266651648