An Efficient Quantum Algorithm for the Hidden Subgroup Problem over some Non-Abelian Groups
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512017000200215 |
Resumo: | ABSTRACT The hidden subgroup problem (HSP) plays an important role in quantum computing because many quantum algorithms that are exponentially faster than classical algorithms are special cases of the HSP. In this paper we show that there exists a new efficient quantum algorithm for the HSP on groups Z N ⋊ Z q s where N is an integer with a special prime factorization, q prime number and s any positive integer. |
id |
SBMAC-1_0ae79c325978d5baecf35029d60893f3 |
---|---|
oai_identifier_str |
oai:scielo:S2179-84512017000200215 |
network_acronym_str |
SBMAC-1 |
network_name_str |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
repository_id_str |
|
spelling |
An Efficient Quantum Algorithm for the Hidden Subgroup Problem over some Non-Abelian GroupsQuantum AlgorithmsHidden Subgroup ProblemQuantum Computational Group TheoryABSTRACT The hidden subgroup problem (HSP) plays an important role in quantum computing because many quantum algorithms that are exponentially faster than classical algorithms are special cases of the HSP. In this paper we show that there exists a new efficient quantum algorithm for the HSP on groups Z N ⋊ Z q s where N is an integer with a special prime factorization, q prime number and s any positive integer.Sociedade Brasileira de Matemática Aplicada e Computacional2017-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512017000200215TEMA (São Carlos) v.18 n.2 2017reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)instname:Sociedade Brasileira de Matemática Aplicada e Computacionalinstacron:SBMAC10.5540/tema.2017.018.02.0215info:eu-repo/semantics/openAccessGONÇALVES,D.N.FERNANDES,T.D.COSME,C.M.M.eng2017-09-14T00:00:00Zoai:scielo:S2179-84512017000200215Revistahttp://www.scielo.br/temaPUBhttps://old.scielo.br/oai/scielo-oai.phpcastelo@icmc.usp.br2179-84511677-1966opendoar:2017-09-14T00:00TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacionalfalse |
dc.title.none.fl_str_mv |
An Efficient Quantum Algorithm for the Hidden Subgroup Problem over some Non-Abelian Groups |
title |
An Efficient Quantum Algorithm for the Hidden Subgroup Problem over some Non-Abelian Groups |
spellingShingle |
An Efficient Quantum Algorithm for the Hidden Subgroup Problem over some Non-Abelian Groups GONÇALVES,D.N. Quantum Algorithms Hidden Subgroup Problem Quantum Computational Group Theory |
title_short |
An Efficient Quantum Algorithm for the Hidden Subgroup Problem over some Non-Abelian Groups |
title_full |
An Efficient Quantum Algorithm for the Hidden Subgroup Problem over some Non-Abelian Groups |
title_fullStr |
An Efficient Quantum Algorithm for the Hidden Subgroup Problem over some Non-Abelian Groups |
title_full_unstemmed |
An Efficient Quantum Algorithm for the Hidden Subgroup Problem over some Non-Abelian Groups |
title_sort |
An Efficient Quantum Algorithm for the Hidden Subgroup Problem over some Non-Abelian Groups |
author |
GONÇALVES,D.N. |
author_facet |
GONÇALVES,D.N. FERNANDES,T.D. COSME,C.M.M. |
author_role |
author |
author2 |
FERNANDES,T.D. COSME,C.M.M. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
GONÇALVES,D.N. FERNANDES,T.D. COSME,C.M.M. |
dc.subject.por.fl_str_mv |
Quantum Algorithms Hidden Subgroup Problem Quantum Computational Group Theory |
topic |
Quantum Algorithms Hidden Subgroup Problem Quantum Computational Group Theory |
description |
ABSTRACT The hidden subgroup problem (HSP) plays an important role in quantum computing because many quantum algorithms that are exponentially faster than classical algorithms are special cases of the HSP. In this paper we show that there exists a new efficient quantum algorithm for the HSP on groups Z N ⋊ Z q s where N is an integer with a special prime factorization, q prime number and s any positive integer. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-08-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512017000200215 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512017000200215 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.5540/tema.2017.018.02.0215 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
dc.source.none.fl_str_mv |
TEMA (São Carlos) v.18 n.2 2017 reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) instname:Sociedade Brasileira de Matemática Aplicada e Computacional instacron:SBMAC |
instname_str |
Sociedade Brasileira de Matemática Aplicada e Computacional |
instacron_str |
SBMAC |
institution |
SBMAC |
reponame_str |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
collection |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
repository.name.fl_str_mv |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacional |
repository.mail.fl_str_mv |
castelo@icmc.usp.br |
_version_ |
1752122220213174272 |