An Efficient Quantum Algorithm for the Hidden Subgroup Problem over some Non-Abelian Groups

Detalhes bibliográficos
Autor(a) principal: GONÇALVES,D.N.
Data de Publicação: 2017
Outros Autores: FERNANDES,T.D., COSME,C.M.M.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512017000200215
Resumo: ABSTRACT The hidden subgroup problem (HSP) plays an important role in quantum computing because many quantum algorithms that are exponentially faster than classical algorithms are special cases of the HSP. In this paper we show that there exists a new efficient quantum algorithm for the HSP on groups Z N ⋊ Z q s where N is an integer with a special prime factorization, q prime number and s any positive integer.
id SBMAC-1_0ae79c325978d5baecf35029d60893f3
oai_identifier_str oai:scielo:S2179-84512017000200215
network_acronym_str SBMAC-1
network_name_str TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
repository_id_str
spelling An Efficient Quantum Algorithm for the Hidden Subgroup Problem over some Non-Abelian GroupsQuantum AlgorithmsHidden Subgroup ProblemQuantum Computational Group TheoryABSTRACT The hidden subgroup problem (HSP) plays an important role in quantum computing because many quantum algorithms that are exponentially faster than classical algorithms are special cases of the HSP. In this paper we show that there exists a new efficient quantum algorithm for the HSP on groups Z N ⋊ Z q s where N is an integer with a special prime factorization, q prime number and s any positive integer.Sociedade Brasileira de Matemática Aplicada e Computacional2017-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512017000200215TEMA (São Carlos) v.18 n.2 2017reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)instname:Sociedade Brasileira de Matemática Aplicada e Computacionalinstacron:SBMAC10.5540/tema.2017.018.02.0215info:eu-repo/semantics/openAccessGONÇALVES,D.N.FERNANDES,T.D.COSME,C.M.M.eng2017-09-14T00:00:00Zoai:scielo:S2179-84512017000200215Revistahttp://www.scielo.br/temaPUBhttps://old.scielo.br/oai/scielo-oai.phpcastelo@icmc.usp.br2179-84511677-1966opendoar:2017-09-14T00:00TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacionalfalse
dc.title.none.fl_str_mv An Efficient Quantum Algorithm for the Hidden Subgroup Problem over some Non-Abelian Groups
title An Efficient Quantum Algorithm for the Hidden Subgroup Problem over some Non-Abelian Groups
spellingShingle An Efficient Quantum Algorithm for the Hidden Subgroup Problem over some Non-Abelian Groups
GONÇALVES,D.N.
Quantum Algorithms
Hidden Subgroup Problem
Quantum Computational Group Theory
title_short An Efficient Quantum Algorithm for the Hidden Subgroup Problem over some Non-Abelian Groups
title_full An Efficient Quantum Algorithm for the Hidden Subgroup Problem over some Non-Abelian Groups
title_fullStr An Efficient Quantum Algorithm for the Hidden Subgroup Problem over some Non-Abelian Groups
title_full_unstemmed An Efficient Quantum Algorithm for the Hidden Subgroup Problem over some Non-Abelian Groups
title_sort An Efficient Quantum Algorithm for the Hidden Subgroup Problem over some Non-Abelian Groups
author GONÇALVES,D.N.
author_facet GONÇALVES,D.N.
FERNANDES,T.D.
COSME,C.M.M.
author_role author
author2 FERNANDES,T.D.
COSME,C.M.M.
author2_role author
author
dc.contributor.author.fl_str_mv GONÇALVES,D.N.
FERNANDES,T.D.
COSME,C.M.M.
dc.subject.por.fl_str_mv Quantum Algorithms
Hidden Subgroup Problem
Quantum Computational Group Theory
topic Quantum Algorithms
Hidden Subgroup Problem
Quantum Computational Group Theory
description ABSTRACT The hidden subgroup problem (HSP) plays an important role in quantum computing because many quantum algorithms that are exponentially faster than classical algorithms are special cases of the HSP. In this paper we show that there exists a new efficient quantum algorithm for the HSP on groups Z N ⋊ Z q s where N is an integer with a special prime factorization, q prime number and s any positive integer.
publishDate 2017
dc.date.none.fl_str_mv 2017-08-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512017000200215
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512017000200215
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.5540/tema.2017.018.02.0215
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
dc.source.none.fl_str_mv TEMA (São Carlos) v.18 n.2 2017
reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
instname:Sociedade Brasileira de Matemática Aplicada e Computacional
instacron:SBMAC
instname_str Sociedade Brasileira de Matemática Aplicada e Computacional
instacron_str SBMAC
institution SBMAC
reponame_str TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
collection TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
repository.name.fl_str_mv TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacional
repository.mail.fl_str_mv castelo@icmc.usp.br
_version_ 1752122220213174272