Exact Barrier Option Valuation with Deterministic Volatility

Detalhes bibliográficos
Autor(a) principal: ROSALINO Jr.,E.
Data de Publicação: 2015
Outros Autores: SILVA,A.J., BACZYNSKI,J., LEÃO,D.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512015000100061
Resumo: Focus, in the past four decades, has been obtaining closed-form expressions for the noarbitrage prices and hedges of modified versions of the European options, allowing the dynamic of the underlying assets to have non-constant parameters. In this paper, we obtain a closed-form expression for the price and hedge of an up-and-out European barrier option, assuming that the volatility in the dynamic of the risky asset is an arbitrary deterministic function of time. Setting a constant volatility, the formulas recover the Black and Scholes results, which suggestsminimum computational effort. We introduce a novel concept of relative standard deviation for measuring the exposure of the practitioner to risk (enforced by a strategy). The notion that is found in the literature is different and looses the correct physical interpretation. The measure serves aiding the practitioner to adjust the number of rebalances during the option's lifetime.
id SBMAC-1_14668619726865e0452204db38dc4859
oai_identifier_str oai:scielo:S2179-84512015000100061
network_acronym_str SBMAC-1
network_name_str TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
repository_id_str
spelling Exact Barrier Option Valuation with Deterministic Volatilitybarrier optionno-arbitrage pricinghedgingMartingale measuretime-change for MartingalesFocus, in the past four decades, has been obtaining closed-form expressions for the noarbitrage prices and hedges of modified versions of the European options, allowing the dynamic of the underlying assets to have non-constant parameters. In this paper, we obtain a closed-form expression for the price and hedge of an up-and-out European barrier option, assuming that the volatility in the dynamic of the risky asset is an arbitrary deterministic function of time. Setting a constant volatility, the formulas recover the Black and Scholes results, which suggestsminimum computational effort. We introduce a novel concept of relative standard deviation for measuring the exposure of the practitioner to risk (enforced by a strategy). The notion that is found in the literature is different and looses the correct physical interpretation. The measure serves aiding the practitioner to adjust the number of rebalances during the option's lifetime.Sociedade Brasileira de Matemática Aplicada e Computacional2015-04-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512015000100061TEMA (São Carlos) v.16 n.1 2015reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)instname:Sociedade Brasileira de Matemática Aplicada e Computacionalinstacron:SBMAC10.5540/tema.2015.016.01.0061info:eu-repo/semantics/openAccessROSALINO Jr.,E.SILVA,A.J.BACZYNSKI,J.LEÃO,D.eng2015-05-12T00:00:00Zoai:scielo:S2179-84512015000100061Revistahttp://www.scielo.br/temaPUBhttps://old.scielo.br/oai/scielo-oai.phpcastelo@icmc.usp.br2179-84511677-1966opendoar:2015-05-12T00:00TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacionalfalse
dc.title.none.fl_str_mv Exact Barrier Option Valuation with Deterministic Volatility
title Exact Barrier Option Valuation with Deterministic Volatility
spellingShingle Exact Barrier Option Valuation with Deterministic Volatility
ROSALINO Jr.,E.
barrier option
no-arbitrage pricing
hedging
Martingale measure
time-change for Martingales
title_short Exact Barrier Option Valuation with Deterministic Volatility
title_full Exact Barrier Option Valuation with Deterministic Volatility
title_fullStr Exact Barrier Option Valuation with Deterministic Volatility
title_full_unstemmed Exact Barrier Option Valuation with Deterministic Volatility
title_sort Exact Barrier Option Valuation with Deterministic Volatility
author ROSALINO Jr.,E.
author_facet ROSALINO Jr.,E.
SILVA,A.J.
BACZYNSKI,J.
LEÃO,D.
author_role author
author2 SILVA,A.J.
BACZYNSKI,J.
LEÃO,D.
author2_role author
author
author
dc.contributor.author.fl_str_mv ROSALINO Jr.,E.
SILVA,A.J.
BACZYNSKI,J.
LEÃO,D.
dc.subject.por.fl_str_mv barrier option
no-arbitrage pricing
hedging
Martingale measure
time-change for Martingales
topic barrier option
no-arbitrage pricing
hedging
Martingale measure
time-change for Martingales
description Focus, in the past four decades, has been obtaining closed-form expressions for the noarbitrage prices and hedges of modified versions of the European options, allowing the dynamic of the underlying assets to have non-constant parameters. In this paper, we obtain a closed-form expression for the price and hedge of an up-and-out European barrier option, assuming that the volatility in the dynamic of the risky asset is an arbitrary deterministic function of time. Setting a constant volatility, the formulas recover the Black and Scholes results, which suggestsminimum computational effort. We introduce a novel concept of relative standard deviation for measuring the exposure of the practitioner to risk (enforced by a strategy). The notion that is found in the literature is different and looses the correct physical interpretation. The measure serves aiding the practitioner to adjust the number of rebalances during the option's lifetime.
publishDate 2015
dc.date.none.fl_str_mv 2015-04-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512015000100061
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512015000100061
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.5540/tema.2015.016.01.0061
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
dc.source.none.fl_str_mv TEMA (São Carlos) v.16 n.1 2015
reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
instname:Sociedade Brasileira de Matemática Aplicada e Computacional
instacron:SBMAC
instname_str Sociedade Brasileira de Matemática Aplicada e Computacional
instacron_str SBMAC
institution SBMAC
reponame_str TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
collection TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
repository.name.fl_str_mv TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacional
repository.mail.fl_str_mv castelo@icmc.usp.br
_version_ 1752122220099928064