Exact Barrier Option Valuation with Deterministic Volatility
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512015000100061 |
Resumo: | Focus, in the past four decades, has been obtaining closed-form expressions for the noarbitrage prices and hedges of modified versions of the European options, allowing the dynamic of the underlying assets to have non-constant parameters. In this paper, we obtain a closed-form expression for the price and hedge of an up-and-out European barrier option, assuming that the volatility in the dynamic of the risky asset is an arbitrary deterministic function of time. Setting a constant volatility, the formulas recover the Black and Scholes results, which suggestsminimum computational effort. We introduce a novel concept of relative standard deviation for measuring the exposure of the practitioner to risk (enforced by a strategy). The notion that is found in the literature is different and looses the correct physical interpretation. The measure serves aiding the practitioner to adjust the number of rebalances during the option's lifetime. |
id |
SBMAC-1_14668619726865e0452204db38dc4859 |
---|---|
oai_identifier_str |
oai:scielo:S2179-84512015000100061 |
network_acronym_str |
SBMAC-1 |
network_name_str |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
repository_id_str |
|
spelling |
Exact Barrier Option Valuation with Deterministic Volatilitybarrier optionno-arbitrage pricinghedgingMartingale measuretime-change for MartingalesFocus, in the past four decades, has been obtaining closed-form expressions for the noarbitrage prices and hedges of modified versions of the European options, allowing the dynamic of the underlying assets to have non-constant parameters. In this paper, we obtain a closed-form expression for the price and hedge of an up-and-out European barrier option, assuming that the volatility in the dynamic of the risky asset is an arbitrary deterministic function of time. Setting a constant volatility, the formulas recover the Black and Scholes results, which suggestsminimum computational effort. We introduce a novel concept of relative standard deviation for measuring the exposure of the practitioner to risk (enforced by a strategy). The notion that is found in the literature is different and looses the correct physical interpretation. The measure serves aiding the practitioner to adjust the number of rebalances during the option's lifetime.Sociedade Brasileira de Matemática Aplicada e Computacional2015-04-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512015000100061TEMA (São Carlos) v.16 n.1 2015reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)instname:Sociedade Brasileira de Matemática Aplicada e Computacionalinstacron:SBMAC10.5540/tema.2015.016.01.0061info:eu-repo/semantics/openAccessROSALINO Jr.,E.SILVA,A.J.BACZYNSKI,J.LEÃO,D.eng2015-05-12T00:00:00Zoai:scielo:S2179-84512015000100061Revistahttp://www.scielo.br/temaPUBhttps://old.scielo.br/oai/scielo-oai.phpcastelo@icmc.usp.br2179-84511677-1966opendoar:2015-05-12T00:00TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacionalfalse |
dc.title.none.fl_str_mv |
Exact Barrier Option Valuation with Deterministic Volatility |
title |
Exact Barrier Option Valuation with Deterministic Volatility |
spellingShingle |
Exact Barrier Option Valuation with Deterministic Volatility ROSALINO Jr.,E. barrier option no-arbitrage pricing hedging Martingale measure time-change for Martingales |
title_short |
Exact Barrier Option Valuation with Deterministic Volatility |
title_full |
Exact Barrier Option Valuation with Deterministic Volatility |
title_fullStr |
Exact Barrier Option Valuation with Deterministic Volatility |
title_full_unstemmed |
Exact Barrier Option Valuation with Deterministic Volatility |
title_sort |
Exact Barrier Option Valuation with Deterministic Volatility |
author |
ROSALINO Jr.,E. |
author_facet |
ROSALINO Jr.,E. SILVA,A.J. BACZYNSKI,J. LEÃO,D. |
author_role |
author |
author2 |
SILVA,A.J. BACZYNSKI,J. LEÃO,D. |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
ROSALINO Jr.,E. SILVA,A.J. BACZYNSKI,J. LEÃO,D. |
dc.subject.por.fl_str_mv |
barrier option no-arbitrage pricing hedging Martingale measure time-change for Martingales |
topic |
barrier option no-arbitrage pricing hedging Martingale measure time-change for Martingales |
description |
Focus, in the past four decades, has been obtaining closed-form expressions for the noarbitrage prices and hedges of modified versions of the European options, allowing the dynamic of the underlying assets to have non-constant parameters. In this paper, we obtain a closed-form expression for the price and hedge of an up-and-out European barrier option, assuming that the volatility in the dynamic of the risky asset is an arbitrary deterministic function of time. Setting a constant volatility, the formulas recover the Black and Scholes results, which suggestsminimum computational effort. We introduce a novel concept of relative standard deviation for measuring the exposure of the practitioner to risk (enforced by a strategy). The notion that is found in the literature is different and looses the correct physical interpretation. The measure serves aiding the practitioner to adjust the number of rebalances during the option's lifetime. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-04-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512015000100061 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512015000100061 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.5540/tema.2015.016.01.0061 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
dc.source.none.fl_str_mv |
TEMA (São Carlos) v.16 n.1 2015 reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) instname:Sociedade Brasileira de Matemática Aplicada e Computacional instacron:SBMAC |
instname_str |
Sociedade Brasileira de Matemática Aplicada e Computacional |
instacron_str |
SBMAC |
institution |
SBMAC |
reponame_str |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
collection |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
repository.name.fl_str_mv |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacional |
repository.mail.fl_str_mv |
castelo@icmc.usp.br |
_version_ |
1752122220099928064 |