Multiple Solutions for an Equation of Kirchhoff Type: Theoretical and Numerical Aspects

Detalhes bibliográficos
Autor(a) principal: MARTINEZ,A.L.M.
Data de Publicação: 2018
Outros Autores: CASTELANI,E.V., BRESSAN,G.M., STIEGELMEIER,E.W.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512018000300559
Resumo: ABSTRACT A nonlinear boundary value problem related to an equation of Kirchhoff type is considered. The existence of multiple positive solutions is proved through Avery-Peterson Fixed Point Theorem. A numerical method based on Levenberg-Marquadt algorithm combined with a heuristic process is present in order to align numerical and theoretical aspects.
id SBMAC-1_1921bac5457f2abba1abd70fcbe5ada2
oai_identifier_str oai:scielo:S2179-84512018000300559
network_acronym_str SBMAC-1
network_name_str TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
repository_id_str
spelling Multiple Solutions for an Equation of Kirchhoff Type: Theoretical and Numerical AspectsMultiple solutionKirchhoff Equationnumerical solutionsABSTRACT A nonlinear boundary value problem related to an equation of Kirchhoff type is considered. The existence of multiple positive solutions is proved through Avery-Peterson Fixed Point Theorem. A numerical method based on Levenberg-Marquadt algorithm combined with a heuristic process is present in order to align numerical and theoretical aspects.Sociedade Brasileira de Matemática Aplicada e Computacional2018-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512018000300559TEMA (São Carlos) v.19 n.3 2018reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)instname:Sociedade Brasileira de Matemática Aplicada e Computacionalinstacron:SBMAC10.5540/tema.2018.019.03.0559info:eu-repo/semantics/openAccessMARTINEZ,A.L.M.CASTELANI,E.V.BRESSAN,G.M.STIEGELMEIER,E.W.eng2018-12-13T00:00:00Zoai:scielo:S2179-84512018000300559Revistahttp://www.scielo.br/temaPUBhttps://old.scielo.br/oai/scielo-oai.phpcastelo@icmc.usp.br2179-84511677-1966opendoar:2018-12-13T00:00TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacionalfalse
dc.title.none.fl_str_mv Multiple Solutions for an Equation of Kirchhoff Type: Theoretical and Numerical Aspects
title Multiple Solutions for an Equation of Kirchhoff Type: Theoretical and Numerical Aspects
spellingShingle Multiple Solutions for an Equation of Kirchhoff Type: Theoretical and Numerical Aspects
MARTINEZ,A.L.M.
Multiple solution
Kirchhoff Equation
numerical solutions
title_short Multiple Solutions for an Equation of Kirchhoff Type: Theoretical and Numerical Aspects
title_full Multiple Solutions for an Equation of Kirchhoff Type: Theoretical and Numerical Aspects
title_fullStr Multiple Solutions for an Equation of Kirchhoff Type: Theoretical and Numerical Aspects
title_full_unstemmed Multiple Solutions for an Equation of Kirchhoff Type: Theoretical and Numerical Aspects
title_sort Multiple Solutions for an Equation of Kirchhoff Type: Theoretical and Numerical Aspects
author MARTINEZ,A.L.M.
author_facet MARTINEZ,A.L.M.
CASTELANI,E.V.
BRESSAN,G.M.
STIEGELMEIER,E.W.
author_role author
author2 CASTELANI,E.V.
BRESSAN,G.M.
STIEGELMEIER,E.W.
author2_role author
author
author
dc.contributor.author.fl_str_mv MARTINEZ,A.L.M.
CASTELANI,E.V.
BRESSAN,G.M.
STIEGELMEIER,E.W.
dc.subject.por.fl_str_mv Multiple solution
Kirchhoff Equation
numerical solutions
topic Multiple solution
Kirchhoff Equation
numerical solutions
description ABSTRACT A nonlinear boundary value problem related to an equation of Kirchhoff type is considered. The existence of multiple positive solutions is proved through Avery-Peterson Fixed Point Theorem. A numerical method based on Levenberg-Marquadt algorithm combined with a heuristic process is present in order to align numerical and theoretical aspects.
publishDate 2018
dc.date.none.fl_str_mv 2018-12-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512018000300559
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512018000300559
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.5540/tema.2018.019.03.0559
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
dc.source.none.fl_str_mv TEMA (São Carlos) v.19 n.3 2018
reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
instname:Sociedade Brasileira de Matemática Aplicada e Computacional
instacron:SBMAC
instname_str Sociedade Brasileira de Matemática Aplicada e Computacional
instacron_str SBMAC
institution SBMAC
reponame_str TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
collection TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
repository.name.fl_str_mv TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacional
repository.mail.fl_str_mv castelo@icmc.usp.br
_version_ 1752122220542427136