Multiple Solutions for an Equation of Kirchhoff Type: Theoretical and Numerical Aspects
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512018000300559 |
Resumo: | ABSTRACT A nonlinear boundary value problem related to an equation of Kirchhoff type is considered. The existence of multiple positive solutions is proved through Avery-Peterson Fixed Point Theorem. A numerical method based on Levenberg-Marquadt algorithm combined with a heuristic process is present in order to align numerical and theoretical aspects. |
id |
SBMAC-1_1921bac5457f2abba1abd70fcbe5ada2 |
---|---|
oai_identifier_str |
oai:scielo:S2179-84512018000300559 |
network_acronym_str |
SBMAC-1 |
network_name_str |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
repository_id_str |
|
spelling |
Multiple Solutions for an Equation of Kirchhoff Type: Theoretical and Numerical AspectsMultiple solutionKirchhoff Equationnumerical solutionsABSTRACT A nonlinear boundary value problem related to an equation of Kirchhoff type is considered. The existence of multiple positive solutions is proved through Avery-Peterson Fixed Point Theorem. A numerical method based on Levenberg-Marquadt algorithm combined with a heuristic process is present in order to align numerical and theoretical aspects.Sociedade Brasileira de Matemática Aplicada e Computacional2018-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512018000300559TEMA (São Carlos) v.19 n.3 2018reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)instname:Sociedade Brasileira de Matemática Aplicada e Computacionalinstacron:SBMAC10.5540/tema.2018.019.03.0559info:eu-repo/semantics/openAccessMARTINEZ,A.L.M.CASTELANI,E.V.BRESSAN,G.M.STIEGELMEIER,E.W.eng2018-12-13T00:00:00Zoai:scielo:S2179-84512018000300559Revistahttp://www.scielo.br/temaPUBhttps://old.scielo.br/oai/scielo-oai.phpcastelo@icmc.usp.br2179-84511677-1966opendoar:2018-12-13T00:00TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacionalfalse |
dc.title.none.fl_str_mv |
Multiple Solutions for an Equation of Kirchhoff Type: Theoretical and Numerical Aspects |
title |
Multiple Solutions for an Equation of Kirchhoff Type: Theoretical and Numerical Aspects |
spellingShingle |
Multiple Solutions for an Equation of Kirchhoff Type: Theoretical and Numerical Aspects MARTINEZ,A.L.M. Multiple solution Kirchhoff Equation numerical solutions |
title_short |
Multiple Solutions for an Equation of Kirchhoff Type: Theoretical and Numerical Aspects |
title_full |
Multiple Solutions for an Equation of Kirchhoff Type: Theoretical and Numerical Aspects |
title_fullStr |
Multiple Solutions for an Equation of Kirchhoff Type: Theoretical and Numerical Aspects |
title_full_unstemmed |
Multiple Solutions for an Equation of Kirchhoff Type: Theoretical and Numerical Aspects |
title_sort |
Multiple Solutions for an Equation of Kirchhoff Type: Theoretical and Numerical Aspects |
author |
MARTINEZ,A.L.M. |
author_facet |
MARTINEZ,A.L.M. CASTELANI,E.V. BRESSAN,G.M. STIEGELMEIER,E.W. |
author_role |
author |
author2 |
CASTELANI,E.V. BRESSAN,G.M. STIEGELMEIER,E.W. |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
MARTINEZ,A.L.M. CASTELANI,E.V. BRESSAN,G.M. STIEGELMEIER,E.W. |
dc.subject.por.fl_str_mv |
Multiple solution Kirchhoff Equation numerical solutions |
topic |
Multiple solution Kirchhoff Equation numerical solutions |
description |
ABSTRACT A nonlinear boundary value problem related to an equation of Kirchhoff type is considered. The existence of multiple positive solutions is proved through Avery-Peterson Fixed Point Theorem. A numerical method based on Levenberg-Marquadt algorithm combined with a heuristic process is present in order to align numerical and theoretical aspects. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-12-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512018000300559 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512018000300559 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.5540/tema.2018.019.03.0559 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
dc.source.none.fl_str_mv |
TEMA (São Carlos) v.19 n.3 2018 reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) instname:Sociedade Brasileira de Matemática Aplicada e Computacional instacron:SBMAC |
instname_str |
Sociedade Brasileira de Matemática Aplicada e Computacional |
instacron_str |
SBMAC |
institution |
SBMAC |
reponame_str |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
collection |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
repository.name.fl_str_mv |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacional |
repository.mail.fl_str_mv |
castelo@icmc.usp.br |
_version_ |
1752122220542427136 |