Locating Eigenvalues of Perturbed Laplacian Matrices of Trees
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512017000300479 |
Resumo: | ABSTRACT We give a linear time algorithm to compute the number of eigenvalues of any perturbed Laplacian matrix of a tree in a given real interval. The algorithm can be applied to weighted or unweighted trees. Using our method we characterize the trees that have up to 5 distinct eigenvalues with respect to a family of perturbed Laplacian matrices that includes the adjacency and normalized Laplacian matrices as special cases, among others. |
id |
SBMAC-1_20971e30ac628e26723a332e14cbf639 |
---|---|
oai_identifier_str |
oai:scielo:S2179-84512017000300479 |
network_acronym_str |
SBMAC-1 |
network_name_str |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
repository_id_str |
|
spelling |
Locating Eigenvalues of Perturbed Laplacian Matrices of Treesperturbed Laplacian matrixeigenvalue locationtreesABSTRACT We give a linear time algorithm to compute the number of eigenvalues of any perturbed Laplacian matrix of a tree in a given real interval. The algorithm can be applied to weighted or unweighted trees. Using our method we characterize the trees that have up to 5 distinct eigenvalues with respect to a family of perturbed Laplacian matrices that includes the adjacency and normalized Laplacian matrices as special cases, among others.Sociedade Brasileira de Matemática Aplicada e Computacional2017-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512017000300479TEMA (São Carlos) v.18 n.3 2017reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)instname:Sociedade Brasileira de Matemática Aplicada e Computacionalinstacron:SBMAC10.5540/tema.2017.018.03.0479info:eu-repo/semantics/openAccessBRAGA,R.O.RODRIGUES,V.M.eng2018-02-08T00:00:00Zoai:scielo:S2179-84512017000300479Revistahttp://www.scielo.br/temaPUBhttps://old.scielo.br/oai/scielo-oai.phpcastelo@icmc.usp.br2179-84511677-1966opendoar:2018-02-08T00:00TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacionalfalse |
dc.title.none.fl_str_mv |
Locating Eigenvalues of Perturbed Laplacian Matrices of Trees |
title |
Locating Eigenvalues of Perturbed Laplacian Matrices of Trees |
spellingShingle |
Locating Eigenvalues of Perturbed Laplacian Matrices of Trees BRAGA,R.O. perturbed Laplacian matrix eigenvalue location trees |
title_short |
Locating Eigenvalues of Perturbed Laplacian Matrices of Trees |
title_full |
Locating Eigenvalues of Perturbed Laplacian Matrices of Trees |
title_fullStr |
Locating Eigenvalues of Perturbed Laplacian Matrices of Trees |
title_full_unstemmed |
Locating Eigenvalues of Perturbed Laplacian Matrices of Trees |
title_sort |
Locating Eigenvalues of Perturbed Laplacian Matrices of Trees |
author |
BRAGA,R.O. |
author_facet |
BRAGA,R.O. RODRIGUES,V.M. |
author_role |
author |
author2 |
RODRIGUES,V.M. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
BRAGA,R.O. RODRIGUES,V.M. |
dc.subject.por.fl_str_mv |
perturbed Laplacian matrix eigenvalue location trees |
topic |
perturbed Laplacian matrix eigenvalue location trees |
description |
ABSTRACT We give a linear time algorithm to compute the number of eigenvalues of any perturbed Laplacian matrix of a tree in a given real interval. The algorithm can be applied to weighted or unweighted trees. Using our method we characterize the trees that have up to 5 distinct eigenvalues with respect to a family of perturbed Laplacian matrices that includes the adjacency and normalized Laplacian matrices as special cases, among others. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-12-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512017000300479 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512017000300479 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.5540/tema.2017.018.03.0479 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
dc.source.none.fl_str_mv |
TEMA (São Carlos) v.18 n.3 2017 reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) instname:Sociedade Brasileira de Matemática Aplicada e Computacional instacron:SBMAC |
instname_str |
Sociedade Brasileira de Matemática Aplicada e Computacional |
instacron_str |
SBMAC |
institution |
SBMAC |
reponame_str |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
collection |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
repository.name.fl_str_mv |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacional |
repository.mail.fl_str_mv |
castelo@icmc.usp.br |
_version_ |
1752122220237291520 |