A Comparison Among Simple Algorithms for Linear Programming
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512018000200305 |
Resumo: | ABSTRACT This paper presents a comparison between a family of simple algorithms for linear programming and the optimal pair adjustment algorithm. The optimal pair adjustment algorithm improvements the convergence of von Neumann’s algorithm which is very attractive because of its simplicity. However, it is not practical to solve linear programming problems to optimality, since its convergence is slow. The family of simple algorithms results from the generalization of the optimal pair adjustment algorithm, including a parameter on the number of chosen columns instead of just a pair of them. Such generalization preserves the simple algorithms nice features. Significant improvements over the optimal pair adjustment algorithm were demonstrated through numerical experiments on a set of linear programming problems. |
id |
SBMAC-1_55ac302a06bfa140516973b902ea8693 |
---|---|
oai_identifier_str |
oai:scielo:S2179-84512018000200305 |
network_acronym_str |
SBMAC-1 |
network_name_str |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
repository_id_str |
|
spelling |
A Comparison Among Simple Algorithms for Linear ProgrammingLinear programmingvon Neumann’s algorithmSimple algorithmsABSTRACT This paper presents a comparison between a family of simple algorithms for linear programming and the optimal pair adjustment algorithm. The optimal pair adjustment algorithm improvements the convergence of von Neumann’s algorithm which is very attractive because of its simplicity. However, it is not practical to solve linear programming problems to optimality, since its convergence is slow. The family of simple algorithms results from the generalization of the optimal pair adjustment algorithm, including a parameter on the number of chosen columns instead of just a pair of them. Such generalization preserves the simple algorithms nice features. Significant improvements over the optimal pair adjustment algorithm were demonstrated through numerical experiments on a set of linear programming problems.Sociedade Brasileira de Matemática Aplicada e Computacional2018-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512018000200305TEMA (São Carlos) v.19 n.2 2018reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)instname:Sociedade Brasileira de Matemática Aplicada e Computacionalinstacron:SBMAC10.5540/tema.2018.019.02.0305info:eu-repo/semantics/openAccessSILVA,J.GHIDINI,C.T.L.S.OLIVEIRA,A.R.L.FONTOVA,M.I.V.eng2018-09-10T00:00:00Zoai:scielo:S2179-84512018000200305Revistahttp://www.scielo.br/temaPUBhttps://old.scielo.br/oai/scielo-oai.phpcastelo@icmc.usp.br2179-84511677-1966opendoar:2018-09-10T00:00TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacionalfalse |
dc.title.none.fl_str_mv |
A Comparison Among Simple Algorithms for Linear Programming |
title |
A Comparison Among Simple Algorithms for Linear Programming |
spellingShingle |
A Comparison Among Simple Algorithms for Linear Programming SILVA,J. Linear programming von Neumann’s algorithm Simple algorithms |
title_short |
A Comparison Among Simple Algorithms for Linear Programming |
title_full |
A Comparison Among Simple Algorithms for Linear Programming |
title_fullStr |
A Comparison Among Simple Algorithms for Linear Programming |
title_full_unstemmed |
A Comparison Among Simple Algorithms for Linear Programming |
title_sort |
A Comparison Among Simple Algorithms for Linear Programming |
author |
SILVA,J. |
author_facet |
SILVA,J. GHIDINI,C.T.L.S. OLIVEIRA,A.R.L. FONTOVA,M.I.V. |
author_role |
author |
author2 |
GHIDINI,C.T.L.S. OLIVEIRA,A.R.L. FONTOVA,M.I.V. |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
SILVA,J. GHIDINI,C.T.L.S. OLIVEIRA,A.R.L. FONTOVA,M.I.V. |
dc.subject.por.fl_str_mv |
Linear programming von Neumann’s algorithm Simple algorithms |
topic |
Linear programming von Neumann’s algorithm Simple algorithms |
description |
ABSTRACT This paper presents a comparison between a family of simple algorithms for linear programming and the optimal pair adjustment algorithm. The optimal pair adjustment algorithm improvements the convergence of von Neumann’s algorithm which is very attractive because of its simplicity. However, it is not practical to solve linear programming problems to optimality, since its convergence is slow. The family of simple algorithms results from the generalization of the optimal pair adjustment algorithm, including a parameter on the number of chosen columns instead of just a pair of them. Such generalization preserves the simple algorithms nice features. Significant improvements over the optimal pair adjustment algorithm were demonstrated through numerical experiments on a set of linear programming problems. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-08-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512018000200305 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512018000200305 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.5540/tema.2018.019.02.0305 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
dc.source.none.fl_str_mv |
TEMA (São Carlos) v.19 n.2 2018 reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) instname:Sociedade Brasileira de Matemática Aplicada e Computacional instacron:SBMAC |
instname_str |
Sociedade Brasileira de Matemática Aplicada e Computacional |
instacron_str |
SBMAC |
institution |
SBMAC |
reponame_str |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
collection |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
repository.name.fl_str_mv |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacional |
repository.mail.fl_str_mv |
castelo@icmc.usp.br |
_version_ |
1752122220514115584 |