A Construction of Rotated Lattices via Totally Real Subfields of the Cyclotomic Field ℚ ( ζ p )
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512019000300561 |
Resumo: | ABSTRACT The theory of lattices have shown to be useful in information theory and rotated lattices with high modulation diversity have been extensively studied as an alternative approach for transmission over a Rayleigh-fading channel, where the performance of this modulation schemes essentially depends on the modulation diversity and on the minimum product distance to achieve substantial coding gains. The maximum diversity of a rotated lattice is guaranteed when we use totally real number fields and the minimum product distance is optimized by considering fields with minimum discriminant. In this paper, we present construction of a full diversity rotated lattice for the Rayleigh fading channel in Euclidean space with full diversity, where this construction is through a totally real subfield �� of the cyclotomic field Q ( ζ p ), where p is an odd prime, obtained by endowing their ring of integers. |
id |
SBMAC-1_65ba23717a1d7a6a26cc16eca43c4af7 |
---|---|
oai_identifier_str |
oai:scielo:S2179-84512019000300561 |
network_acronym_str |
SBMAC-1 |
network_name_str |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
repository_id_str |
|
spelling |
A Construction of Rotated Lattices via Totally Real Subfields of the Cyclotomic Field ℚ ( ζ p ) latticescyclotomic fieldsalgebraic number fieldrotated latticeABSTRACT The theory of lattices have shown to be useful in information theory and rotated lattices with high modulation diversity have been extensively studied as an alternative approach for transmission over a Rayleigh-fading channel, where the performance of this modulation schemes essentially depends on the modulation diversity and on the minimum product distance to achieve substantial coding gains. The maximum diversity of a rotated lattice is guaranteed when we use totally real number fields and the minimum product distance is optimized by considering fields with minimum discriminant. In this paper, we present construction of a full diversity rotated lattice for the Rayleigh fading channel in Euclidean space with full diversity, where this construction is through a totally real subfield �� of the cyclotomic field Q ( ζ p ), where p is an odd prime, obtained by endowing their ring of integers.Sociedade Brasileira de Matemática Aplicada e Computacional2019-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512019000300561TEMA (São Carlos) v.20 n.3 2019reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)instname:Sociedade Brasileira de Matemática Aplicada e Computacionalinstacron:SBMAC10.5540/tema.2019.020.03.0561info:eu-repo/semantics/openAccessANDRADE,A. A.OLIVEIRA,E. L.INTERLANDO,J. C.eng2019-12-12T00:00:00Zoai:scielo:S2179-84512019000300561Revistahttp://www.scielo.br/temaPUBhttps://old.scielo.br/oai/scielo-oai.phpcastelo@icmc.usp.br2179-84511677-1966opendoar:2019-12-12T00:00TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacionalfalse |
dc.title.none.fl_str_mv |
A Construction of Rotated Lattices via Totally Real Subfields of the Cyclotomic Field ℚ ( ζ p ) |
title |
A Construction of Rotated Lattices via Totally Real Subfields of the Cyclotomic Field ℚ ( ζ p ) |
spellingShingle |
A Construction of Rotated Lattices via Totally Real Subfields of the Cyclotomic Field ℚ ( ζ p ) ANDRADE,A. A. lattices cyclotomic fields algebraic number field rotated lattice |
title_short |
A Construction of Rotated Lattices via Totally Real Subfields of the Cyclotomic Field ℚ ( ζ p ) |
title_full |
A Construction of Rotated Lattices via Totally Real Subfields of the Cyclotomic Field ℚ ( ζ p ) |
title_fullStr |
A Construction of Rotated Lattices via Totally Real Subfields of the Cyclotomic Field ℚ ( ζ p ) |
title_full_unstemmed |
A Construction of Rotated Lattices via Totally Real Subfields of the Cyclotomic Field ℚ ( ζ p ) |
title_sort |
A Construction of Rotated Lattices via Totally Real Subfields of the Cyclotomic Field ℚ ( ζ p ) |
author |
ANDRADE,A. A. |
author_facet |
ANDRADE,A. A. OLIVEIRA,E. L. INTERLANDO,J. C. |
author_role |
author |
author2 |
OLIVEIRA,E. L. INTERLANDO,J. C. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
ANDRADE,A. A. OLIVEIRA,E. L. INTERLANDO,J. C. |
dc.subject.por.fl_str_mv |
lattices cyclotomic fields algebraic number field rotated lattice |
topic |
lattices cyclotomic fields algebraic number field rotated lattice |
description |
ABSTRACT The theory of lattices have shown to be useful in information theory and rotated lattices with high modulation diversity have been extensively studied as an alternative approach for transmission over a Rayleigh-fading channel, where the performance of this modulation schemes essentially depends on the modulation diversity and on the minimum product distance to achieve substantial coding gains. The maximum diversity of a rotated lattice is guaranteed when we use totally real number fields and the minimum product distance is optimized by considering fields with minimum discriminant. In this paper, we present construction of a full diversity rotated lattice for the Rayleigh fading channel in Euclidean space with full diversity, where this construction is through a totally real subfield �� of the cyclotomic field Q ( ζ p ), where p is an odd prime, obtained by endowing their ring of integers. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-12-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512019000300561 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512019000300561 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.5540/tema.2019.020.03.0561 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
dc.source.none.fl_str_mv |
TEMA (São Carlos) v.20 n.3 2019 reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) instname:Sociedade Brasileira de Matemática Aplicada e Computacional instacron:SBMAC |
instname_str |
Sociedade Brasileira de Matemática Aplicada e Computacional |
instacron_str |
SBMAC |
institution |
SBMAC |
reponame_str |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
collection |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
repository.name.fl_str_mv |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacional |
repository.mail.fl_str_mv |
castelo@icmc.usp.br |
_version_ |
1752122220629458944 |