A Construction of Rotated Lattices via Totally Real Subfields of the Cyclotomic Field ℚ ( ζ p )

Detalhes bibliográficos
Autor(a) principal: ANDRADE,A. A.
Data de Publicação: 2019
Outros Autores: OLIVEIRA,E. L., INTERLANDO,J. C.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512019000300561
Resumo: ABSTRACT The theory of lattices have shown to be useful in information theory and rotated lattices with high modulation diversity have been extensively studied as an alternative approach for transmission over a Rayleigh-fading channel, where the performance of this modulation schemes essentially depends on the modulation diversity and on the minimum product distance to achieve substantial coding gains. The maximum diversity of a rotated lattice is guaranteed when we use totally real number fields and the minimum product distance is optimized by considering fields with minimum discriminant. In this paper, we present construction of a full diversity rotated lattice for the Rayleigh fading channel in Euclidean space with full diversity, where this construction is through a totally real subfield �� of the cyclotomic field Q ( ζ p ), where p is an odd prime, obtained by endowing their ring of integers.
id SBMAC-1_65ba23717a1d7a6a26cc16eca43c4af7
oai_identifier_str oai:scielo:S2179-84512019000300561
network_acronym_str SBMAC-1
network_name_str TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
repository_id_str
spelling A Construction of Rotated Lattices via Totally Real Subfields of the Cyclotomic Field ℚ ( ζ p ) latticescyclotomic fieldsalgebraic number fieldrotated latticeABSTRACT The theory of lattices have shown to be useful in information theory and rotated lattices with high modulation diversity have been extensively studied as an alternative approach for transmission over a Rayleigh-fading channel, where the performance of this modulation schemes essentially depends on the modulation diversity and on the minimum product distance to achieve substantial coding gains. The maximum diversity of a rotated lattice is guaranteed when we use totally real number fields and the minimum product distance is optimized by considering fields with minimum discriminant. In this paper, we present construction of a full diversity rotated lattice for the Rayleigh fading channel in Euclidean space with full diversity, where this construction is through a totally real subfield �� of the cyclotomic field Q ( ζ p ), where p is an odd prime, obtained by endowing their ring of integers.Sociedade Brasileira de Matemática Aplicada e Computacional2019-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512019000300561TEMA (São Carlos) v.20 n.3 2019reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)instname:Sociedade Brasileira de Matemática Aplicada e Computacionalinstacron:SBMAC10.5540/tema.2019.020.03.0561info:eu-repo/semantics/openAccessANDRADE,A. A.OLIVEIRA,E. L.INTERLANDO,J. C.eng2019-12-12T00:00:00Zoai:scielo:S2179-84512019000300561Revistahttp://www.scielo.br/temaPUBhttps://old.scielo.br/oai/scielo-oai.phpcastelo@icmc.usp.br2179-84511677-1966opendoar:2019-12-12T00:00TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacionalfalse
dc.title.none.fl_str_mv A Construction of Rotated Lattices via Totally Real Subfields of the Cyclotomic Field ℚ ( ζ p )
title A Construction of Rotated Lattices via Totally Real Subfields of the Cyclotomic Field ℚ ( ζ p )
spellingShingle A Construction of Rotated Lattices via Totally Real Subfields of the Cyclotomic Field ℚ ( ζ p )
ANDRADE,A. A.
lattices
cyclotomic fields
algebraic number field
rotated lattice
title_short A Construction of Rotated Lattices via Totally Real Subfields of the Cyclotomic Field ℚ ( ζ p )
title_full A Construction of Rotated Lattices via Totally Real Subfields of the Cyclotomic Field ℚ ( ζ p )
title_fullStr A Construction of Rotated Lattices via Totally Real Subfields of the Cyclotomic Field ℚ ( ζ p )
title_full_unstemmed A Construction of Rotated Lattices via Totally Real Subfields of the Cyclotomic Field ℚ ( ζ p )
title_sort A Construction of Rotated Lattices via Totally Real Subfields of the Cyclotomic Field ℚ ( ζ p )
author ANDRADE,A. A.
author_facet ANDRADE,A. A.
OLIVEIRA,E. L.
INTERLANDO,J. C.
author_role author
author2 OLIVEIRA,E. L.
INTERLANDO,J. C.
author2_role author
author
dc.contributor.author.fl_str_mv ANDRADE,A. A.
OLIVEIRA,E. L.
INTERLANDO,J. C.
dc.subject.por.fl_str_mv lattices
cyclotomic fields
algebraic number field
rotated lattice
topic lattices
cyclotomic fields
algebraic number field
rotated lattice
description ABSTRACT The theory of lattices have shown to be useful in information theory and rotated lattices with high modulation diversity have been extensively studied as an alternative approach for transmission over a Rayleigh-fading channel, where the performance of this modulation schemes essentially depends on the modulation diversity and on the minimum product distance to achieve substantial coding gains. The maximum diversity of a rotated lattice is guaranteed when we use totally real number fields and the minimum product distance is optimized by considering fields with minimum discriminant. In this paper, we present construction of a full diversity rotated lattice for the Rayleigh fading channel in Euclidean space with full diversity, where this construction is through a totally real subfield �� of the cyclotomic field Q ( ζ p ), where p is an odd prime, obtained by endowing their ring of integers.
publishDate 2019
dc.date.none.fl_str_mv 2019-12-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512019000300561
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512019000300561
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.5540/tema.2019.020.03.0561
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
dc.source.none.fl_str_mv TEMA (São Carlos) v.20 n.3 2019
reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
instname:Sociedade Brasileira de Matemática Aplicada e Computacional
instacron:SBMAC
instname_str Sociedade Brasileira de Matemática Aplicada e Computacional
instacron_str SBMAC
institution SBMAC
reponame_str TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
collection TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
repository.name.fl_str_mv TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacional
repository.mail.fl_str_mv castelo@icmc.usp.br
_version_ 1752122220629458944