Theoretical and Numerical Aspects of a Third-order Three-point Nonhomogeneous Boundary Value Problem

Detalhes bibliográficos
Autor(a) principal: MARTINEZ,A. L. M.
Data de Publicação: 2019
Outros Autores: FERREIRA,M. R. A., CASTELANI,E. V.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512019000300417
Resumo: ABSTRACT In this paper we are considering a third-order three-point equation with nonhomogeneous conditions in the boundary. Using Krasnoselskii’s Theorem and Leray-Schauder Alternative we provide existence results of positive solutions for this problem. Nontrivials examples are given and a numerical method is introduced.
id SBMAC-1_65cba4c75e6277656bb949994583c768
oai_identifier_str oai:scielo:S2179-84512019000300417
network_acronym_str SBMAC-1
network_name_str TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
repository_id_str
spelling Theoretical and Numerical Aspects of a Third-order Three-point Nonhomogeneous Boundary Value Problemnumerical solutionsthird-orderboundary value problemKrasnoselskii’s TheoremABSTRACT In this paper we are considering a third-order three-point equation with nonhomogeneous conditions in the boundary. Using Krasnoselskii’s Theorem and Leray-Schauder Alternative we provide existence results of positive solutions for this problem. Nontrivials examples are given and a numerical method is introduced.Sociedade Brasileira de Matemática Aplicada e Computacional2019-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512019000300417TEMA (São Carlos) v.20 n.3 2019reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)instname:Sociedade Brasileira de Matemática Aplicada e Computacionalinstacron:SBMAC10.5540/tema.2019.020.03.0417info:eu-repo/semantics/openAccessMARTINEZ,A. L. M.FERREIRA,M. R. A.CASTELANI,E. V.eng2019-12-12T00:00:00Zoai:scielo:S2179-84512019000300417Revistahttp://www.scielo.br/temaPUBhttps://old.scielo.br/oai/scielo-oai.phpcastelo@icmc.usp.br2179-84511677-1966opendoar:2019-12-12T00:00TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacionalfalse
dc.title.none.fl_str_mv Theoretical and Numerical Aspects of a Third-order Three-point Nonhomogeneous Boundary Value Problem
title Theoretical and Numerical Aspects of a Third-order Three-point Nonhomogeneous Boundary Value Problem
spellingShingle Theoretical and Numerical Aspects of a Third-order Three-point Nonhomogeneous Boundary Value Problem
MARTINEZ,A. L. M.
numerical solutions
third-order
boundary value problem
Krasnoselskii’s Theorem
title_short Theoretical and Numerical Aspects of a Third-order Three-point Nonhomogeneous Boundary Value Problem
title_full Theoretical and Numerical Aspects of a Third-order Three-point Nonhomogeneous Boundary Value Problem
title_fullStr Theoretical and Numerical Aspects of a Third-order Three-point Nonhomogeneous Boundary Value Problem
title_full_unstemmed Theoretical and Numerical Aspects of a Third-order Three-point Nonhomogeneous Boundary Value Problem
title_sort Theoretical and Numerical Aspects of a Third-order Three-point Nonhomogeneous Boundary Value Problem
author MARTINEZ,A. L. M.
author_facet MARTINEZ,A. L. M.
FERREIRA,M. R. A.
CASTELANI,E. V.
author_role author
author2 FERREIRA,M. R. A.
CASTELANI,E. V.
author2_role author
author
dc.contributor.author.fl_str_mv MARTINEZ,A. L. M.
FERREIRA,M. R. A.
CASTELANI,E. V.
dc.subject.por.fl_str_mv numerical solutions
third-order
boundary value problem
Krasnoselskii’s Theorem
topic numerical solutions
third-order
boundary value problem
Krasnoselskii’s Theorem
description ABSTRACT In this paper we are considering a third-order three-point equation with nonhomogeneous conditions in the boundary. Using Krasnoselskii’s Theorem and Leray-Schauder Alternative we provide existence results of positive solutions for this problem. Nontrivials examples are given and a numerical method is introduced.
publishDate 2019
dc.date.none.fl_str_mv 2019-12-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512019000300417
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512019000300417
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.5540/tema.2019.020.03.0417
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
dc.source.none.fl_str_mv TEMA (São Carlos) v.20 n.3 2019
reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
instname:Sociedade Brasileira de Matemática Aplicada e Computacional
instacron:SBMAC
instname_str Sociedade Brasileira de Matemática Aplicada e Computacional
instacron_str SBMAC
institution SBMAC
reponame_str TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
collection TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
repository.name.fl_str_mv TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacional
repository.mail.fl_str_mv castelo@icmc.usp.br
_version_ 1752122220620021760