The long-term exponentiated complementary exponential geometric distribution under a latent complementary causes framework

Detalhes bibliográficos
Autor(a) principal: Louzada,F.
Data de Publicação: 2014
Outros Autores: Yamachi,C.Y., Marchi,V.A.A., Franco,M.A.P.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512014000100003
Resumo: In this paper we proposed a new long-term distribution derived from the exponentiated complementary exponential geometric distribution (LECEG). The LECEG distribution is obtained straightforwardly from the exponentiated complementary exponential geometric (ECEG) and accommodates decreasing and unimodal hazard functions in a latent complementary causes scenario, where only the maximum lifetime among all causes is observed. We derive the density, quantile, survival and failure rate functions for the proposed distribution, as well as some proprieties such as the characteristic function, mean, variance and r-th order statistics. The estimation is based on maximum likelihood approach. A simulation study is performed in order to assess the performance of the maximum likelihood estimates. The practical importance of the new distribution was demonstrated in three real datasets.
id SBMAC-1_6750253e3ac6b7ce7947a39b076b64af
oai_identifier_str oai:scielo:S2179-84512014000100003
network_acronym_str SBMAC-1
network_name_str TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
repository_id_str
spelling The long-term exponentiated complementary exponential geometric distribution under a latent complementary causes frameworkexponentiated complementary exponential geometric distributionlatent competing riskslong-term survivalsIn this paper we proposed a new long-term distribution derived from the exponentiated complementary exponential geometric distribution (LECEG). The LECEG distribution is obtained straightforwardly from the exponentiated complementary exponential geometric (ECEG) and accommodates decreasing and unimodal hazard functions in a latent complementary causes scenario, where only the maximum lifetime among all causes is observed. We derive the density, quantile, survival and failure rate functions for the proposed distribution, as well as some proprieties such as the characteristic function, mean, variance and r-th order statistics. The estimation is based on maximum likelihood approach. A simulation study is performed in order to assess the performance of the maximum likelihood estimates. The practical importance of the new distribution was demonstrated in three real datasets.Sociedade Brasileira de Matemática Aplicada e Computacional2014-04-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512014000100003TEMA (São Carlos) v.15 n.1 2014reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)instname:Sociedade Brasileira de Matemática Aplicada e Computacionalinstacron:SBMAC10.5540/tema.2014.015.01.0019info:eu-repo/semantics/openAccessLouzada,F.Yamachi,C.Y.Marchi,V.A.A.Franco,M.A.P.eng2014-06-10T00:00:00Zoai:scielo:S2179-84512014000100003Revistahttp://www.scielo.br/temaPUBhttps://old.scielo.br/oai/scielo-oai.phpcastelo@icmc.usp.br2179-84511677-1966opendoar:2014-06-10T00:00TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacionalfalse
dc.title.none.fl_str_mv The long-term exponentiated complementary exponential geometric distribution under a latent complementary causes framework
title The long-term exponentiated complementary exponential geometric distribution under a latent complementary causes framework
spellingShingle The long-term exponentiated complementary exponential geometric distribution under a latent complementary causes framework
Louzada,F.
exponentiated complementary exponential geometric distribution
latent competing risks
long-term survivals
title_short The long-term exponentiated complementary exponential geometric distribution under a latent complementary causes framework
title_full The long-term exponentiated complementary exponential geometric distribution under a latent complementary causes framework
title_fullStr The long-term exponentiated complementary exponential geometric distribution under a latent complementary causes framework
title_full_unstemmed The long-term exponentiated complementary exponential geometric distribution under a latent complementary causes framework
title_sort The long-term exponentiated complementary exponential geometric distribution under a latent complementary causes framework
author Louzada,F.
author_facet Louzada,F.
Yamachi,C.Y.
Marchi,V.A.A.
Franco,M.A.P.
author_role author
author2 Yamachi,C.Y.
Marchi,V.A.A.
Franco,M.A.P.
author2_role author
author
author
dc.contributor.author.fl_str_mv Louzada,F.
Yamachi,C.Y.
Marchi,V.A.A.
Franco,M.A.P.
dc.subject.por.fl_str_mv exponentiated complementary exponential geometric distribution
latent competing risks
long-term survivals
topic exponentiated complementary exponential geometric distribution
latent competing risks
long-term survivals
description In this paper we proposed a new long-term distribution derived from the exponentiated complementary exponential geometric distribution (LECEG). The LECEG distribution is obtained straightforwardly from the exponentiated complementary exponential geometric (ECEG) and accommodates decreasing and unimodal hazard functions in a latent complementary causes scenario, where only the maximum lifetime among all causes is observed. We derive the density, quantile, survival and failure rate functions for the proposed distribution, as well as some proprieties such as the characteristic function, mean, variance and r-th order statistics. The estimation is based on maximum likelihood approach. A simulation study is performed in order to assess the performance of the maximum likelihood estimates. The practical importance of the new distribution was demonstrated in three real datasets.
publishDate 2014
dc.date.none.fl_str_mv 2014-04-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512014000100003
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512014000100003
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.5540/tema.2014.015.01.0019
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
dc.source.none.fl_str_mv TEMA (São Carlos) v.15 n.1 2014
reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
instname:Sociedade Brasileira de Matemática Aplicada e Computacional
instacron:SBMAC
instname_str Sociedade Brasileira de Matemática Aplicada e Computacional
instacron_str SBMAC
institution SBMAC
reponame_str TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
collection TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
repository.name.fl_str_mv TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacional
repository.mail.fl_str_mv castelo@icmc.usp.br
_version_ 1752122219805278208