Algorithms and Properties for Positive Symmetrizable Matrices
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512016000200187 |
Resumo: | ABSTRACT Matrices are one of the most common representations of graphs. They are also used forrepresenting algebras and cluster algebras. A symmetrizable matrix M is one for which there is a diagonal matrix D with positive entries, called symmetrizer matrix, such that DM is symmetric. This paper provides some properties of matrices in order to facilitate the understanding of symmetrizable matrices with specific characteristics, called positive quasi-Cartan companion matrices, and the problem of localizing them.We sharpen known coefficient limits for such matrices. By generalizing Sylvester's criterion for symmetrizable matrices we show that the localization problem is in NP and conjectured that it is NP-complete. |
id |
SBMAC-1_67b22e141a4703e843e27d609685aaa7 |
---|---|
oai_identifier_str |
oai:scielo:S2179-84512016000200187 |
network_acronym_str |
SBMAC-1 |
network_name_str |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
repository_id_str |
|
spelling |
Algorithms and Properties for Positive Symmetrizable Matricessymmetrizable matrixpositive quasi-Cartan matrixalgorithmABSTRACT Matrices are one of the most common representations of graphs. They are also used forrepresenting algebras and cluster algebras. A symmetrizable matrix M is one for which there is a diagonal matrix D with positive entries, called symmetrizer matrix, such that DM is symmetric. This paper provides some properties of matrices in order to facilitate the understanding of symmetrizable matrices with specific characteristics, called positive quasi-Cartan companion matrices, and the problem of localizing them.We sharpen known coefficient limits for such matrices. By generalizing Sylvester's criterion for symmetrizable matrices we show that the localization problem is in NP and conjectured that it is NP-complete.Sociedade Brasileira de Matemática Aplicada e Computacional2016-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512016000200187TEMA (São Carlos) v.17 n.2 2016reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)instname:Sociedade Brasileira de Matemática Aplicada e Computacionalinstacron:SBMAC10.5540/tema.2016.017.02.0187info:eu-repo/semantics/openAccessDIAS,E.S.S.CASTONGUAY,D.DOURADO,M.C.eng2016-10-03T00:00:00Zoai:scielo:S2179-84512016000200187Revistahttp://www.scielo.br/temaPUBhttps://old.scielo.br/oai/scielo-oai.phpcastelo@icmc.usp.br2179-84511677-1966opendoar:2016-10-03T00:00TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacionalfalse |
dc.title.none.fl_str_mv |
Algorithms and Properties for Positive Symmetrizable Matrices |
title |
Algorithms and Properties for Positive Symmetrizable Matrices |
spellingShingle |
Algorithms and Properties for Positive Symmetrizable Matrices DIAS,E.S.S. symmetrizable matrix positive quasi-Cartan matrix algorithm |
title_short |
Algorithms and Properties for Positive Symmetrizable Matrices |
title_full |
Algorithms and Properties for Positive Symmetrizable Matrices |
title_fullStr |
Algorithms and Properties for Positive Symmetrizable Matrices |
title_full_unstemmed |
Algorithms and Properties for Positive Symmetrizable Matrices |
title_sort |
Algorithms and Properties for Positive Symmetrizable Matrices |
author |
DIAS,E.S.S. |
author_facet |
DIAS,E.S.S. CASTONGUAY,D. DOURADO,M.C. |
author_role |
author |
author2 |
CASTONGUAY,D. DOURADO,M.C. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
DIAS,E.S.S. CASTONGUAY,D. DOURADO,M.C. |
dc.subject.por.fl_str_mv |
symmetrizable matrix positive quasi-Cartan matrix algorithm |
topic |
symmetrizable matrix positive quasi-Cartan matrix algorithm |
description |
ABSTRACT Matrices are one of the most common representations of graphs. They are also used forrepresenting algebras and cluster algebras. A symmetrizable matrix M is one for which there is a diagonal matrix D with positive entries, called symmetrizer matrix, such that DM is symmetric. This paper provides some properties of matrices in order to facilitate the understanding of symmetrizable matrices with specific characteristics, called positive quasi-Cartan companion matrices, and the problem of localizing them.We sharpen known coefficient limits for such matrices. By generalizing Sylvester's criterion for symmetrizable matrices we show that the localization problem is in NP and conjectured that it is NP-complete. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-08-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512016000200187 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512016000200187 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.5540/tema.2016.017.02.0187 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
dc.source.none.fl_str_mv |
TEMA (São Carlos) v.17 n.2 2016 reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) instname:Sociedade Brasileira de Matemática Aplicada e Computacional instacron:SBMAC |
instname_str |
Sociedade Brasileira de Matemática Aplicada e Computacional |
instacron_str |
SBMAC |
institution |
SBMAC |
reponame_str |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
collection |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
repository.name.fl_str_mv |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacional |
repository.mail.fl_str_mv |
castelo@icmc.usp.br |
_version_ |
1752122220168085504 |