Algorithms and Properties for Positive Symmetrizable Matrices

Detalhes bibliográficos
Autor(a) principal: DIAS,E.S.S.
Data de Publicação: 2016
Outros Autores: CASTONGUAY,D., DOURADO,M.C.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512016000200187
Resumo: ABSTRACT Matrices are one of the most common representations of graphs. They are also used forrepresenting algebras and cluster algebras. A symmetrizable matrix M is one for which there is a diagonal matrix D with positive entries, called symmetrizer matrix, such that DM is symmetric. This paper provides some properties of matrices in order to facilitate the understanding of symmetrizable matrices with specific characteristics, called positive quasi-Cartan companion matrices, and the problem of localizing them.We sharpen known coefficient limits for such matrices. By generalizing Sylvester's criterion for symmetrizable matrices we show that the localization problem is in NP and conjectured that it is NP-complete.
id SBMAC-1_67b22e141a4703e843e27d609685aaa7
oai_identifier_str oai:scielo:S2179-84512016000200187
network_acronym_str SBMAC-1
network_name_str TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
repository_id_str
spelling Algorithms and Properties for Positive Symmetrizable Matricessymmetrizable matrixpositive quasi-Cartan matrixalgorithmABSTRACT Matrices are one of the most common representations of graphs. They are also used forrepresenting algebras and cluster algebras. A symmetrizable matrix M is one for which there is a diagonal matrix D with positive entries, called symmetrizer matrix, such that DM is symmetric. This paper provides some properties of matrices in order to facilitate the understanding of symmetrizable matrices with specific characteristics, called positive quasi-Cartan companion matrices, and the problem of localizing them.We sharpen known coefficient limits for such matrices. By generalizing Sylvester's criterion for symmetrizable matrices we show that the localization problem is in NP and conjectured that it is NP-complete.Sociedade Brasileira de Matemática Aplicada e Computacional2016-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512016000200187TEMA (São Carlos) v.17 n.2 2016reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)instname:Sociedade Brasileira de Matemática Aplicada e Computacionalinstacron:SBMAC10.5540/tema.2016.017.02.0187info:eu-repo/semantics/openAccessDIAS,E.S.S.CASTONGUAY,D.DOURADO,M.C.eng2016-10-03T00:00:00Zoai:scielo:S2179-84512016000200187Revistahttp://www.scielo.br/temaPUBhttps://old.scielo.br/oai/scielo-oai.phpcastelo@icmc.usp.br2179-84511677-1966opendoar:2016-10-03T00:00TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacionalfalse
dc.title.none.fl_str_mv Algorithms and Properties for Positive Symmetrizable Matrices
title Algorithms and Properties for Positive Symmetrizable Matrices
spellingShingle Algorithms and Properties for Positive Symmetrizable Matrices
DIAS,E.S.S.
symmetrizable matrix
positive quasi-Cartan matrix
algorithm
title_short Algorithms and Properties for Positive Symmetrizable Matrices
title_full Algorithms and Properties for Positive Symmetrizable Matrices
title_fullStr Algorithms and Properties for Positive Symmetrizable Matrices
title_full_unstemmed Algorithms and Properties for Positive Symmetrizable Matrices
title_sort Algorithms and Properties for Positive Symmetrizable Matrices
author DIAS,E.S.S.
author_facet DIAS,E.S.S.
CASTONGUAY,D.
DOURADO,M.C.
author_role author
author2 CASTONGUAY,D.
DOURADO,M.C.
author2_role author
author
dc.contributor.author.fl_str_mv DIAS,E.S.S.
CASTONGUAY,D.
DOURADO,M.C.
dc.subject.por.fl_str_mv symmetrizable matrix
positive quasi-Cartan matrix
algorithm
topic symmetrizable matrix
positive quasi-Cartan matrix
algorithm
description ABSTRACT Matrices are one of the most common representations of graphs. They are also used forrepresenting algebras and cluster algebras. A symmetrizable matrix M is one for which there is a diagonal matrix D with positive entries, called symmetrizer matrix, such that DM is symmetric. This paper provides some properties of matrices in order to facilitate the understanding of symmetrizable matrices with specific characteristics, called positive quasi-Cartan companion matrices, and the problem of localizing them.We sharpen known coefficient limits for such matrices. By generalizing Sylvester's criterion for symmetrizable matrices we show that the localization problem is in NP and conjectured that it is NP-complete.
publishDate 2016
dc.date.none.fl_str_mv 2016-08-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512016000200187
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512016000200187
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.5540/tema.2016.017.02.0187
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
dc.source.none.fl_str_mv TEMA (São Carlos) v.17 n.2 2016
reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
instname:Sociedade Brasileira de Matemática Aplicada e Computacional
instacron:SBMAC
instname_str Sociedade Brasileira de Matemática Aplicada e Computacional
instacron_str SBMAC
institution SBMAC
reponame_str TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
collection TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
repository.name.fl_str_mv TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacional
repository.mail.fl_str_mv castelo@icmc.usp.br
_version_ 1752122220168085504