Medical Care in Emergency Units with Risk Classification: Time to Attendance at a Hospital based on Parametric Models
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512019000300571 |
Resumo: | ABSTRACT. The present work intends to study the effectiveness of applying the Manchester Triage System to improve patient flow in a Brazilian hospital, which allows a more welcoming and decisive service. Thus, time to event techniques is applied based on parametric regression models with the objective of investigating indicators for the emergency/urgency sector and thus, contributing to better operational efficiency. The results show that different explanatory variables such as classification, age, period, among others, influence the time of attendance. In the end, we provide a simple model that can be used to predict such time under different explanatory variables for a particular Brazilian hospital. |
id |
SBMAC-1_7cfe8c36ed5788573f5f9682a6649724 |
---|---|
oai_identifier_str |
oai:scielo:S2179-84512019000300571 |
network_acronym_str |
SBMAC-1 |
network_name_str |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
repository_id_str |
|
spelling |
Medical Care in Emergency Units with Risk Classification: Time to Attendance at a Hospital based on Parametric ModelsManchester Triage Systemparametric modelsrisk classificationsurvival analysisABSTRACT. The present work intends to study the effectiveness of applying the Manchester Triage System to improve patient flow in a Brazilian hospital, which allows a more welcoming and decisive service. Thus, time to event techniques is applied based on parametric regression models with the objective of investigating indicators for the emergency/urgency sector and thus, contributing to better operational efficiency. The results show that different explanatory variables such as classification, age, period, among others, influence the time of attendance. In the end, we provide a simple model that can be used to predict such time under different explanatory variables for a particular Brazilian hospital.Sociedade Brasileira de Matemática Aplicada e Computacional2019-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512019000300571TEMA (São Carlos) v.20 n.3 2019reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)instname:Sociedade Brasileira de Matemática Aplicada e Computacionalinstacron:SBMAC10.5540/tema.2019.020.03.571info:eu-repo/semantics/openAccessRAMOS,P. L.NASCIMENTO,D. C.FERNANDES,R.GUIMARÃES,E.SANTANA,M.SOARES,K.LOUZADA,F.eng2019-12-12T00:00:00Zoai:scielo:S2179-84512019000300571Revistahttp://www.scielo.br/temaPUBhttps://old.scielo.br/oai/scielo-oai.phpcastelo@icmc.usp.br2179-84511677-1966opendoar:2019-12-12T00:00TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacionalfalse |
dc.title.none.fl_str_mv |
Medical Care in Emergency Units with Risk Classification: Time to Attendance at a Hospital based on Parametric Models |
title |
Medical Care in Emergency Units with Risk Classification: Time to Attendance at a Hospital based on Parametric Models |
spellingShingle |
Medical Care in Emergency Units with Risk Classification: Time to Attendance at a Hospital based on Parametric Models RAMOS,P. L. Manchester Triage System parametric models risk classification survival analysis |
title_short |
Medical Care in Emergency Units with Risk Classification: Time to Attendance at a Hospital based on Parametric Models |
title_full |
Medical Care in Emergency Units with Risk Classification: Time to Attendance at a Hospital based on Parametric Models |
title_fullStr |
Medical Care in Emergency Units with Risk Classification: Time to Attendance at a Hospital based on Parametric Models |
title_full_unstemmed |
Medical Care in Emergency Units with Risk Classification: Time to Attendance at a Hospital based on Parametric Models |
title_sort |
Medical Care in Emergency Units with Risk Classification: Time to Attendance at a Hospital based on Parametric Models |
author |
RAMOS,P. L. |
author_facet |
RAMOS,P. L. NASCIMENTO,D. C. FERNANDES,R. GUIMARÃES,E. SANTANA,M. SOARES,K. LOUZADA,F. |
author_role |
author |
author2 |
NASCIMENTO,D. C. FERNANDES,R. GUIMARÃES,E. SANTANA,M. SOARES,K. LOUZADA,F. |
author2_role |
author author author author author author |
dc.contributor.author.fl_str_mv |
RAMOS,P. L. NASCIMENTO,D. C. FERNANDES,R. GUIMARÃES,E. SANTANA,M. SOARES,K. LOUZADA,F. |
dc.subject.por.fl_str_mv |
Manchester Triage System parametric models risk classification survival analysis |
topic |
Manchester Triage System parametric models risk classification survival analysis |
description |
ABSTRACT. The present work intends to study the effectiveness of applying the Manchester Triage System to improve patient flow in a Brazilian hospital, which allows a more welcoming and decisive service. Thus, time to event techniques is applied based on parametric regression models with the objective of investigating indicators for the emergency/urgency sector and thus, contributing to better operational efficiency. The results show that different explanatory variables such as classification, age, period, among others, influence the time of attendance. In the end, we provide a simple model that can be used to predict such time under different explanatory variables for a particular Brazilian hospital. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-12-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512019000300571 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512019000300571 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.5540/tema.2019.020.03.571 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
dc.source.none.fl_str_mv |
TEMA (São Carlos) v.20 n.3 2019 reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) instname:Sociedade Brasileira de Matemática Aplicada e Computacional instacron:SBMAC |
instname_str |
Sociedade Brasileira de Matemática Aplicada e Computacional |
instacron_str |
SBMAC |
institution |
SBMAC |
reponame_str |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
collection |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
repository.name.fl_str_mv |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacional |
repository.mail.fl_str_mv |
castelo@icmc.usp.br |
_version_ |
1752122220605341696 |