Análise do Esforço Computacional das Funções Densidade de Probabilidade com Diferentes Distribuições
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512018000100033 |
Resumo: | RESUMO Quando se trabalha com números de ponto flutuante o resultado é apenas uma aproximação de um valor real e erros gerados por arredondamentos ou por instabilidade dos algoritmos podem levar a resultados incorretos. Não se pode afirmar a exatidão da resposta estimada sem o auxílio de uma análise de erro. Utilizando-se intervalos para representação dos números reais, é possível controlar a propagação desses erros, pois resultados intervalares carregam consigo a segurança de sua qualidade. Para obter o valor numérico das funções densidade de probabilidade das variáveis aleatórias contínuas com distribuições Uniforme, Exponencial, Normal, Gama e Pareto se faz necessário o uso de integração numérica, uma vez que a primitiva da função nem sempre é simples de se obter. Além disso, o resultado é obtido por aproximação e, portanto, afetado por erros de arredondamento ou truncamento. Neste contexto, o presente trabalho possui como objetivo analisar a complexidade computacional para computar as funções densidade de probabilidade com distribuições Uniforme, Exponencial, Normal, Gama e Pareto nas formas real e intervalar. Assim, certificase que ao utilizar aritmética intervalar para o cálculo da função densidade de probabilidade das variáveis aleatórias com distribuições, é possível obter um controle automático de erros com limites confiáveis, e, no mínimo, manter o esforço computacional existente nos cálculos que utilizam a aritmética real. |
id |
SBMAC-1_9fb37183093db77bf5e850924627d697 |
---|---|
oai_identifier_str |
oai:scielo:S2179-84512018000100033 |
network_acronym_str |
SBMAC-1 |
network_name_str |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
repository_id_str |
|
spelling |
Análise do Esforço Computacional das Funções Densidade de Probabilidade com Diferentes DistribuiçõesAritmética Intervalarcomplexidade computacionalprobabilidadeRESUMO Quando se trabalha com números de ponto flutuante o resultado é apenas uma aproximação de um valor real e erros gerados por arredondamentos ou por instabilidade dos algoritmos podem levar a resultados incorretos. Não se pode afirmar a exatidão da resposta estimada sem o auxílio de uma análise de erro. Utilizando-se intervalos para representação dos números reais, é possível controlar a propagação desses erros, pois resultados intervalares carregam consigo a segurança de sua qualidade. Para obter o valor numérico das funções densidade de probabilidade das variáveis aleatórias contínuas com distribuições Uniforme, Exponencial, Normal, Gama e Pareto se faz necessário o uso de integração numérica, uma vez que a primitiva da função nem sempre é simples de se obter. Além disso, o resultado é obtido por aproximação e, portanto, afetado por erros de arredondamento ou truncamento. Neste contexto, o presente trabalho possui como objetivo analisar a complexidade computacional para computar as funções densidade de probabilidade com distribuições Uniforme, Exponencial, Normal, Gama e Pareto nas formas real e intervalar. Assim, certificase que ao utilizar aritmética intervalar para o cálculo da função densidade de probabilidade das variáveis aleatórias com distribuições, é possível obter um controle automático de erros com limites confiáveis, e, no mínimo, manter o esforço computacional existente nos cálculos que utilizam a aritmética real.Sociedade Brasileira de Matemática Aplicada e Computacional2018-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512018000100033TEMA (São Carlos) v.19 n.1 2018reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)instname:Sociedade Brasileira de Matemática Aplicada e Computacionalinstacron:SBMAC10.5540/tema.2018.019.01.0033info:eu-repo/semantics/openAccessFINGER,A.LORETO,A.por2018-05-29T00:00:00Zoai:scielo:S2179-84512018000100033Revistahttp://www.scielo.br/temaPUBhttps://old.scielo.br/oai/scielo-oai.phpcastelo@icmc.usp.br2179-84511677-1966opendoar:2018-05-29T00:00TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacionalfalse |
dc.title.none.fl_str_mv |
Análise do Esforço Computacional das Funções Densidade de Probabilidade com Diferentes Distribuições |
title |
Análise do Esforço Computacional das Funções Densidade de Probabilidade com Diferentes Distribuições |
spellingShingle |
Análise do Esforço Computacional das Funções Densidade de Probabilidade com Diferentes Distribuições FINGER,A. Aritmética Intervalar complexidade computacional probabilidade |
title_short |
Análise do Esforço Computacional das Funções Densidade de Probabilidade com Diferentes Distribuições |
title_full |
Análise do Esforço Computacional das Funções Densidade de Probabilidade com Diferentes Distribuições |
title_fullStr |
Análise do Esforço Computacional das Funções Densidade de Probabilidade com Diferentes Distribuições |
title_full_unstemmed |
Análise do Esforço Computacional das Funções Densidade de Probabilidade com Diferentes Distribuições |
title_sort |
Análise do Esforço Computacional das Funções Densidade de Probabilidade com Diferentes Distribuições |
author |
FINGER,A. |
author_facet |
FINGER,A. LORETO,A. |
author_role |
author |
author2 |
LORETO,A. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
FINGER,A. LORETO,A. |
dc.subject.por.fl_str_mv |
Aritmética Intervalar complexidade computacional probabilidade |
topic |
Aritmética Intervalar complexidade computacional probabilidade |
description |
RESUMO Quando se trabalha com números de ponto flutuante o resultado é apenas uma aproximação de um valor real e erros gerados por arredondamentos ou por instabilidade dos algoritmos podem levar a resultados incorretos. Não se pode afirmar a exatidão da resposta estimada sem o auxílio de uma análise de erro. Utilizando-se intervalos para representação dos números reais, é possível controlar a propagação desses erros, pois resultados intervalares carregam consigo a segurança de sua qualidade. Para obter o valor numérico das funções densidade de probabilidade das variáveis aleatórias contínuas com distribuições Uniforme, Exponencial, Normal, Gama e Pareto se faz necessário o uso de integração numérica, uma vez que a primitiva da função nem sempre é simples de se obter. Além disso, o resultado é obtido por aproximação e, portanto, afetado por erros de arredondamento ou truncamento. Neste contexto, o presente trabalho possui como objetivo analisar a complexidade computacional para computar as funções densidade de probabilidade com distribuições Uniforme, Exponencial, Normal, Gama e Pareto nas formas real e intervalar. Assim, certificase que ao utilizar aritmética intervalar para o cálculo da função densidade de probabilidade das variáveis aleatórias com distribuições, é possível obter um controle automático de erros com limites confiáveis, e, no mínimo, manter o esforço computacional existente nos cálculos que utilizam a aritmética real. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512018000100033 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512018000100033 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
10.5540/tema.2018.019.01.0033 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
dc.source.none.fl_str_mv |
TEMA (São Carlos) v.19 n.1 2018 reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) instname:Sociedade Brasileira de Matemática Aplicada e Computacional instacron:SBMAC |
instname_str |
Sociedade Brasileira de Matemática Aplicada e Computacional |
instacron_str |
SBMAC |
institution |
SBMAC |
reponame_str |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
collection |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
repository.name.fl_str_mv |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacional |
repository.mail.fl_str_mv |
castelo@icmc.usp.br |
_version_ |
1752122220244631552 |