Simulation and Calibration Between Parameters of Continuous Time Random Walks and Subdifusive Model
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512017000200305 |
Resumo: | ABSTRACT We address the problem of subdiffusion or normal diffusion to perform a calibration between simulations parameters and those from a subdiffusive model. The theoretical model consists to a generalized diffusion equation with fractional derivatives in time. The data generated by simulations represents continuous-time random walks with controlled mean waiting time and jump length variance to provide a full range of cases between subdiffusion and normal diffusion. From simulations, we compare the accuracy of two methods to obtain the diffusion constant and the order of fractional derivatives: the analysis of the dispersion of the variance in time and an optimized fitting of the histograms of positions with theoretical model solutions. We highlight the connection between the parameters of the simulations those of theoretical models. |
id |
SBMAC-1_a388e3eb14f784516f58f286919ce95d |
---|---|
oai_identifier_str |
oai:scielo:S2179-84512017000200305 |
network_acronym_str |
SBMAC-1 |
network_name_str |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
repository_id_str |
|
spelling |
Simulation and Calibration Between Parameters of Continuous Time Random Walks and Subdifusive Modelanomalous diffusionfractional diffusion equationcalibrationABSTRACT We address the problem of subdiffusion or normal diffusion to perform a calibration between simulations parameters and those from a subdiffusive model. The theoretical model consists to a generalized diffusion equation with fractional derivatives in time. The data generated by simulations represents continuous-time random walks with controlled mean waiting time and jump length variance to provide a full range of cases between subdiffusion and normal diffusion. From simulations, we compare the accuracy of two methods to obtain the diffusion constant and the order of fractional derivatives: the analysis of the dispersion of the variance in time and an optimized fitting of the histograms of positions with theoretical model solutions. We highlight the connection between the parameters of the simulations those of theoretical models.Sociedade Brasileira de Matemática Aplicada e Computacional2017-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512017000200305TEMA (São Carlos) v.18 n.2 2017reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)instname:Sociedade Brasileira de Matemática Aplicada e Computacionalinstacron:SBMAC10.5540/tema.2017.018.02.0305info:eu-repo/semantics/openAccessPEREIRA,A.P.P.FERNANDES,J.P.ATMAN,A.P.F.ACEBAL,J.L.eng2017-09-14T00:00:00Zoai:scielo:S2179-84512017000200305Revistahttp://www.scielo.br/temaPUBhttps://old.scielo.br/oai/scielo-oai.phpcastelo@icmc.usp.br2179-84511677-1966opendoar:2017-09-14T00:00TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacionalfalse |
dc.title.none.fl_str_mv |
Simulation and Calibration Between Parameters of Continuous Time Random Walks and Subdifusive Model |
title |
Simulation and Calibration Between Parameters of Continuous Time Random Walks and Subdifusive Model |
spellingShingle |
Simulation and Calibration Between Parameters of Continuous Time Random Walks and Subdifusive Model PEREIRA,A.P.P. anomalous diffusion fractional diffusion equation calibration |
title_short |
Simulation and Calibration Between Parameters of Continuous Time Random Walks and Subdifusive Model |
title_full |
Simulation and Calibration Between Parameters of Continuous Time Random Walks and Subdifusive Model |
title_fullStr |
Simulation and Calibration Between Parameters of Continuous Time Random Walks and Subdifusive Model |
title_full_unstemmed |
Simulation and Calibration Between Parameters of Continuous Time Random Walks and Subdifusive Model |
title_sort |
Simulation and Calibration Between Parameters of Continuous Time Random Walks and Subdifusive Model |
author |
PEREIRA,A.P.P. |
author_facet |
PEREIRA,A.P.P. FERNANDES,J.P. ATMAN,A.P.F. ACEBAL,J.L. |
author_role |
author |
author2 |
FERNANDES,J.P. ATMAN,A.P.F. ACEBAL,J.L. |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
PEREIRA,A.P.P. FERNANDES,J.P. ATMAN,A.P.F. ACEBAL,J.L. |
dc.subject.por.fl_str_mv |
anomalous diffusion fractional diffusion equation calibration |
topic |
anomalous diffusion fractional diffusion equation calibration |
description |
ABSTRACT We address the problem of subdiffusion or normal diffusion to perform a calibration between simulations parameters and those from a subdiffusive model. The theoretical model consists to a generalized diffusion equation with fractional derivatives in time. The data generated by simulations represents continuous-time random walks with controlled mean waiting time and jump length variance to provide a full range of cases between subdiffusion and normal diffusion. From simulations, we compare the accuracy of two methods to obtain the diffusion constant and the order of fractional derivatives: the analysis of the dispersion of the variance in time and an optimized fitting of the histograms of positions with theoretical model solutions. We highlight the connection between the parameters of the simulations those of theoretical models. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-08-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512017000200305 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512017000200305 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.5540/tema.2017.018.02.0305 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
dc.source.none.fl_str_mv |
TEMA (São Carlos) v.18 n.2 2017 reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) instname:Sociedade Brasileira de Matemática Aplicada e Computacional instacron:SBMAC |
instname_str |
Sociedade Brasileira de Matemática Aplicada e Computacional |
instacron_str |
SBMAC |
institution |
SBMAC |
reponame_str |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
collection |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
repository.name.fl_str_mv |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacional |
repository.mail.fl_str_mv |
castelo@icmc.usp.br |
_version_ |
1752122220221562880 |