Half-factoriality in subrings of trigonometric polynomial rings

Detalhes bibliográficos
Autor(a) principal: Ullah,Ehsan
Data de Publicação: 2013
Outros Autores: Shah,Tariq
Tipo de documento: Artigo
Idioma: eng
Título da fonte: TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512013000200005
Resumo: Trigonometric polynomials are widely used in different fields of engineering and science. Inspired by their applications, we investigate half-factorial domains in trigonometric polynomial rings. We construct the half-factorial domains T '2, T'3 and T'4 which are the subrings of the ring of complex trigonometric polynomials T , such that T'2 ⊆ T'3 ⊆ T'4 ⊆ T'. We also discuss among these three subrings the Condition: Let A ⊆ B be a unitary (commutative) ring extension. For each x ∈ B there exist x ∈ U (B) and x" ∈ A such that x = x'x", where U (B) denote the group of units of B.
id SBMAC-1_a492d9e7c698298170730b7fa184248d
oai_identifier_str oai:scielo:S2179-84512013000200005
network_acronym_str SBMAC-1
network_name_str TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
repository_id_str
spelling Half-factoriality in subrings of trigonometric polynomial ringstrigonometric polynomialHFDcondition 1condition 2irreducibleTrigonometric polynomials are widely used in different fields of engineering and science. Inspired by their applications, we investigate half-factorial domains in trigonometric polynomial rings. We construct the half-factorial domains T '2, T'3 and T'4 which are the subrings of the ring of complex trigonometric polynomials T , such that T'2 ⊆ T'3 ⊆ T'4 ⊆ T'. We also discuss among these three subrings the Condition: Let A ⊆ B be a unitary (commutative) ring extension. For each x ∈ B there exist x ∈ U (B) and x" ∈ A such that x = x'x", where U (B) denote the group of units of B.Sociedade Brasileira de Matemática Aplicada e Computacional2013-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512013000200005TEMA (São Carlos) v.14 n.2 2013reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)instname:Sociedade Brasileira de Matemática Aplicada e Computacionalinstacron:SBMAC10.1590/S2179-84512013005000003info:eu-repo/semantics/openAccessUllah,EhsanShah,Tariqeng2013-11-12T00:00:00Zoai:scielo:S2179-84512013000200005Revistahttp://www.scielo.br/temaPUBhttps://old.scielo.br/oai/scielo-oai.phpcastelo@icmc.usp.br2179-84511677-1966opendoar:2013-11-12T00:00TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacionalfalse
dc.title.none.fl_str_mv Half-factoriality in subrings of trigonometric polynomial rings
title Half-factoriality in subrings of trigonometric polynomial rings
spellingShingle Half-factoriality in subrings of trigonometric polynomial rings
Ullah,Ehsan
trigonometric polynomial
HFD
condition 1
condition 2
irreducible
title_short Half-factoriality in subrings of trigonometric polynomial rings
title_full Half-factoriality in subrings of trigonometric polynomial rings
title_fullStr Half-factoriality in subrings of trigonometric polynomial rings
title_full_unstemmed Half-factoriality in subrings of trigonometric polynomial rings
title_sort Half-factoriality in subrings of trigonometric polynomial rings
author Ullah,Ehsan
author_facet Ullah,Ehsan
Shah,Tariq
author_role author
author2 Shah,Tariq
author2_role author
dc.contributor.author.fl_str_mv Ullah,Ehsan
Shah,Tariq
dc.subject.por.fl_str_mv trigonometric polynomial
HFD
condition 1
condition 2
irreducible
topic trigonometric polynomial
HFD
condition 1
condition 2
irreducible
description Trigonometric polynomials are widely used in different fields of engineering and science. Inspired by their applications, we investigate half-factorial domains in trigonometric polynomial rings. We construct the half-factorial domains T '2, T'3 and T'4 which are the subrings of the ring of complex trigonometric polynomials T , such that T'2 ⊆ T'3 ⊆ T'4 ⊆ T'. We also discuss among these three subrings the Condition: Let A ⊆ B be a unitary (commutative) ring extension. For each x ∈ B there exist x ∈ U (B) and x" ∈ A such that x = x'x", where U (B) denote the group of units of B.
publishDate 2013
dc.date.none.fl_str_mv 2013-08-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512013000200005
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512013000200005
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S2179-84512013005000003
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
dc.source.none.fl_str_mv TEMA (São Carlos) v.14 n.2 2013
reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
instname:Sociedade Brasileira de Matemática Aplicada e Computacional
instacron:SBMAC
instname_str Sociedade Brasileira de Matemática Aplicada e Computacional
instacron_str SBMAC
institution SBMAC
reponame_str TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
collection TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
repository.name.fl_str_mv TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacional
repository.mail.fl_str_mv castelo@icmc.usp.br
_version_ 1752122219791646720