Half-factoriality in subrings of trigonometric polynomial rings
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512013000200005 |
Resumo: | Trigonometric polynomials are widely used in different fields of engineering and science. Inspired by their applications, we investigate half-factorial domains in trigonometric polynomial rings. We construct the half-factorial domains T '2, T'3 and T'4 which are the subrings of the ring of complex trigonometric polynomials T , such that T'2 ⊆ T'3 ⊆ T'4 ⊆ T'. We also discuss among these three subrings the Condition: Let A ⊆ B be a unitary (commutative) ring extension. For each x ∈ B there exist x ∈ U (B) and x" ∈ A such that x = x'x", where U (B) denote the group of units of B. |
id |
SBMAC-1_a492d9e7c698298170730b7fa184248d |
---|---|
oai_identifier_str |
oai:scielo:S2179-84512013000200005 |
network_acronym_str |
SBMAC-1 |
network_name_str |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
repository_id_str |
|
spelling |
Half-factoriality in subrings of trigonometric polynomial ringstrigonometric polynomialHFDcondition 1condition 2irreducibleTrigonometric polynomials are widely used in different fields of engineering and science. Inspired by their applications, we investigate half-factorial domains in trigonometric polynomial rings. We construct the half-factorial domains T '2, T'3 and T'4 which are the subrings of the ring of complex trigonometric polynomials T , such that T'2 ⊆ T'3 ⊆ T'4 ⊆ T'. We also discuss among these three subrings the Condition: Let A ⊆ B be a unitary (commutative) ring extension. For each x ∈ B there exist x ∈ U (B) and x" ∈ A such that x = x'x", where U (B) denote the group of units of B.Sociedade Brasileira de Matemática Aplicada e Computacional2013-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512013000200005TEMA (São Carlos) v.14 n.2 2013reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)instname:Sociedade Brasileira de Matemática Aplicada e Computacionalinstacron:SBMAC10.1590/S2179-84512013005000003info:eu-repo/semantics/openAccessUllah,EhsanShah,Tariqeng2013-11-12T00:00:00Zoai:scielo:S2179-84512013000200005Revistahttp://www.scielo.br/temaPUBhttps://old.scielo.br/oai/scielo-oai.phpcastelo@icmc.usp.br2179-84511677-1966opendoar:2013-11-12T00:00TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacionalfalse |
dc.title.none.fl_str_mv |
Half-factoriality in subrings of trigonometric polynomial rings |
title |
Half-factoriality in subrings of trigonometric polynomial rings |
spellingShingle |
Half-factoriality in subrings of trigonometric polynomial rings Ullah,Ehsan trigonometric polynomial HFD condition 1 condition 2 irreducible |
title_short |
Half-factoriality in subrings of trigonometric polynomial rings |
title_full |
Half-factoriality in subrings of trigonometric polynomial rings |
title_fullStr |
Half-factoriality in subrings of trigonometric polynomial rings |
title_full_unstemmed |
Half-factoriality in subrings of trigonometric polynomial rings |
title_sort |
Half-factoriality in subrings of trigonometric polynomial rings |
author |
Ullah,Ehsan |
author_facet |
Ullah,Ehsan Shah,Tariq |
author_role |
author |
author2 |
Shah,Tariq |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Ullah,Ehsan Shah,Tariq |
dc.subject.por.fl_str_mv |
trigonometric polynomial HFD condition 1 condition 2 irreducible |
topic |
trigonometric polynomial HFD condition 1 condition 2 irreducible |
description |
Trigonometric polynomials are widely used in different fields of engineering and science. Inspired by their applications, we investigate half-factorial domains in trigonometric polynomial rings. We construct the half-factorial domains T '2, T'3 and T'4 which are the subrings of the ring of complex trigonometric polynomials T , such that T'2 ⊆ T'3 ⊆ T'4 ⊆ T'. We also discuss among these three subrings the Condition: Let A ⊆ B be a unitary (commutative) ring extension. For each x ∈ B there exist x ∈ U (B) and x" ∈ A such that x = x'x", where U (B) denote the group of units of B. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-08-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512013000200005 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512013000200005 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S2179-84512013005000003 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
dc.source.none.fl_str_mv |
TEMA (São Carlos) v.14 n.2 2013 reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) instname:Sociedade Brasileira de Matemática Aplicada e Computacional instacron:SBMAC |
instname_str |
Sociedade Brasileira de Matemática Aplicada e Computacional |
instacron_str |
SBMAC |
institution |
SBMAC |
reponame_str |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
collection |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
repository.name.fl_str_mv |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacional |
repository.mail.fl_str_mv |
castelo@icmc.usp.br |
_version_ |
1752122219791646720 |