Trusses Nonlinear Problems Solution with Numerical Methods of Cubic Convergence Order
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512018000100161 |
Resumo: | ABSTRACT A large part of the numerical procedures for obtaining the equilibrium path or load-displacement curve of structural problems with nonlinear behavior is based on the Newton-Raphson iterative scheme, to which is coupled the path-following methods. This paper presents new algorithms based on Potra-Pták, Chebyshev and super-Halley methods combined with the Linear Arc-Length path-following method. The main motivation for using these methods is the cubic order convergence. To elucidate the potential of our approach, we present an analysis of space and plane trusses problems with geometric nonlinearity found in the literature. In this direction, we will make use of the Positional Finite Element Method, which considers the nodal coordinates as variables of the nonlinear system instead of displacements. The numerical results of the simulations show the capacity of the computational algorithm developed to obtain the equilibrium path with force and displacement limits points. The implemented iterative methods exhibit better efficiency as the number of time steps and necessary accumulated iterations until convergence and processing time, in comparison with classic methods of Newton-Raphson and Modified Newton-Raphson. |
id |
SBMAC-1_a7e4b99d350a7f3af27b8ed813705b98 |
---|---|
oai_identifier_str |
oai:scielo:S2179-84512018000100161 |
network_acronym_str |
SBMAC-1 |
network_name_str |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
repository_id_str |
|
spelling |
Trusses Nonlinear Problems Solution with Numerical Methods of Cubic Convergence OrderArc-LengthPositional Finite ElementChebyshevPotra-Pt´akGeometric NonlinearityABSTRACT A large part of the numerical procedures for obtaining the equilibrium path or load-displacement curve of structural problems with nonlinear behavior is based on the Newton-Raphson iterative scheme, to which is coupled the path-following methods. This paper presents new algorithms based on Potra-Pták, Chebyshev and super-Halley methods combined with the Linear Arc-Length path-following method. The main motivation for using these methods is the cubic order convergence. To elucidate the potential of our approach, we present an analysis of space and plane trusses problems with geometric nonlinearity found in the literature. In this direction, we will make use of the Positional Finite Element Method, which considers the nodal coordinates as variables of the nonlinear system instead of displacements. The numerical results of the simulations show the capacity of the computational algorithm developed to obtain the equilibrium path with force and displacement limits points. The implemented iterative methods exhibit better efficiency as the number of time steps and necessary accumulated iterations until convergence and processing time, in comparison with classic methods of Newton-Raphson and Modified Newton-Raphson.Sociedade Brasileira de Matemática Aplicada e Computacional2018-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512018000100161TEMA (São Carlos) v.19 n.1 2018reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)instname:Sociedade Brasileira de Matemática Aplicada e Computacionalinstacron:SBMAC10.5540/tema.2018.019.01.0161info:eu-repo/semantics/openAccessSOUZA,L.A.F.CASTELANI,E.V.SHIRABAYASHI,W.V.I.ALIANO FILHO,A.MACHADO,R.D.eng2018-05-24T00:00:00Zoai:scielo:S2179-84512018000100161Revistahttp://www.scielo.br/temaPUBhttps://old.scielo.br/oai/scielo-oai.phpcastelo@icmc.usp.br2179-84511677-1966opendoar:2018-05-24T00:00TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacionalfalse |
dc.title.none.fl_str_mv |
Trusses Nonlinear Problems Solution with Numerical Methods of Cubic Convergence Order |
title |
Trusses Nonlinear Problems Solution with Numerical Methods of Cubic Convergence Order |
spellingShingle |
Trusses Nonlinear Problems Solution with Numerical Methods of Cubic Convergence Order SOUZA,L.A.F. Arc-Length Positional Finite Element Chebyshev Potra-Pt´ak Geometric Nonlinearity |
title_short |
Trusses Nonlinear Problems Solution with Numerical Methods of Cubic Convergence Order |
title_full |
Trusses Nonlinear Problems Solution with Numerical Methods of Cubic Convergence Order |
title_fullStr |
Trusses Nonlinear Problems Solution with Numerical Methods of Cubic Convergence Order |
title_full_unstemmed |
Trusses Nonlinear Problems Solution with Numerical Methods of Cubic Convergence Order |
title_sort |
Trusses Nonlinear Problems Solution with Numerical Methods of Cubic Convergence Order |
author |
SOUZA,L.A.F. |
author_facet |
SOUZA,L.A.F. CASTELANI,E.V. SHIRABAYASHI,W.V.I. ALIANO FILHO,A. MACHADO,R.D. |
author_role |
author |
author2 |
CASTELANI,E.V. SHIRABAYASHI,W.V.I. ALIANO FILHO,A. MACHADO,R.D. |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
SOUZA,L.A.F. CASTELANI,E.V. SHIRABAYASHI,W.V.I. ALIANO FILHO,A. MACHADO,R.D. |
dc.subject.por.fl_str_mv |
Arc-Length Positional Finite Element Chebyshev Potra-Pt´ak Geometric Nonlinearity |
topic |
Arc-Length Positional Finite Element Chebyshev Potra-Pt´ak Geometric Nonlinearity |
description |
ABSTRACT A large part of the numerical procedures for obtaining the equilibrium path or load-displacement curve of structural problems with nonlinear behavior is based on the Newton-Raphson iterative scheme, to which is coupled the path-following methods. This paper presents new algorithms based on Potra-Pták, Chebyshev and super-Halley methods combined with the Linear Arc-Length path-following method. The main motivation for using these methods is the cubic order convergence. To elucidate the potential of our approach, we present an analysis of space and plane trusses problems with geometric nonlinearity found in the literature. In this direction, we will make use of the Positional Finite Element Method, which considers the nodal coordinates as variables of the nonlinear system instead of displacements. The numerical results of the simulations show the capacity of the computational algorithm developed to obtain the equilibrium path with force and displacement limits points. The implemented iterative methods exhibit better efficiency as the number of time steps and necessary accumulated iterations until convergence and processing time, in comparison with classic methods of Newton-Raphson and Modified Newton-Raphson. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512018000100161 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512018000100161 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.5540/tema.2018.019.01.0161 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
dc.source.none.fl_str_mv |
TEMA (São Carlos) v.19 n.1 2018 reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) instname:Sociedade Brasileira de Matemática Aplicada e Computacional instacron:SBMAC |
instname_str |
Sociedade Brasileira de Matemática Aplicada e Computacional |
instacron_str |
SBMAC |
institution |
SBMAC |
reponame_str |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
collection |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
repository.name.fl_str_mv |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacional |
repository.mail.fl_str_mv |
castelo@icmc.usp.br |
_version_ |
1752122220257214464 |