Subcritical Hopf Equilibrium Points in the Boundary of the Stability Region
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512016000200211 |
Resumo: | ABSTRACT A complete characterization of the boundary of the stability region of a class of nonlinear autonomous dynamical systems is developed admitting the existence of Subcritical Hopf nonhyperbolic equilibrium points on the boundary of the stability region. The characterization of the stability region developed in this paper is an extension of the characterization already developed in the literature, which considers only hyperbolic equilibrium point. Under the transversality condition, it is shown the boundary of the stability region is comprised of the stable manifolds of all equilibrium points on the boundary of the stability region, including the stable manifolds of the subcritical Hopf equilibrium points of type k, with 0 ≤ k ≤ n - 2, which belong to the boundary of the stability region. |
id |
SBMAC-1_b20ae00649e9a1bc7b58620423a30913 |
---|---|
oai_identifier_str |
oai:scielo:S2179-84512016000200211 |
network_acronym_str |
SBMAC-1 |
network_name_str |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
repository_id_str |
|
spelling |
Subcritical Hopf Equilibrium Points in the Boundary of the Stability Regiondynamical systemsnonlinear systemsstability regionboundary of the stability regionsubcritical Hopf equilibrium pointABSTRACT A complete characterization of the boundary of the stability region of a class of nonlinear autonomous dynamical systems is developed admitting the existence of Subcritical Hopf nonhyperbolic equilibrium points on the boundary of the stability region. The characterization of the stability region developed in this paper is an extension of the characterization already developed in the literature, which considers only hyperbolic equilibrium point. Under the transversality condition, it is shown the boundary of the stability region is comprised of the stable manifolds of all equilibrium points on the boundary of the stability region, including the stable manifolds of the subcritical Hopf equilibrium points of type k, with 0 ≤ k ≤ n - 2, which belong to the boundary of the stability region.Sociedade Brasileira de Matemática Aplicada e Computacional2016-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512016000200211TEMA (São Carlos) v.17 n.2 2016reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)instname:Sociedade Brasileira de Matemática Aplicada e Computacionalinstacron:SBMAC10.5540/tema.2016.017.02.0211info:eu-repo/semantics/openAccessGOUVEIA Jr,J.R.R.AMARAL,F.M.ALBERTO,L.F.C.eng2016-10-03T00:00:00Zoai:scielo:S2179-84512016000200211Revistahttp://www.scielo.br/temaPUBhttps://old.scielo.br/oai/scielo-oai.phpcastelo@icmc.usp.br2179-84511677-1966opendoar:2016-10-03T00:00TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacionalfalse |
dc.title.none.fl_str_mv |
Subcritical Hopf Equilibrium Points in the Boundary of the Stability Region |
title |
Subcritical Hopf Equilibrium Points in the Boundary of the Stability Region |
spellingShingle |
Subcritical Hopf Equilibrium Points in the Boundary of the Stability Region GOUVEIA Jr,J.R.R. dynamical systems nonlinear systems stability region boundary of the stability region subcritical Hopf equilibrium point |
title_short |
Subcritical Hopf Equilibrium Points in the Boundary of the Stability Region |
title_full |
Subcritical Hopf Equilibrium Points in the Boundary of the Stability Region |
title_fullStr |
Subcritical Hopf Equilibrium Points in the Boundary of the Stability Region |
title_full_unstemmed |
Subcritical Hopf Equilibrium Points in the Boundary of the Stability Region |
title_sort |
Subcritical Hopf Equilibrium Points in the Boundary of the Stability Region |
author |
GOUVEIA Jr,J.R.R. |
author_facet |
GOUVEIA Jr,J.R.R. AMARAL,F.M. ALBERTO,L.F.C. |
author_role |
author |
author2 |
AMARAL,F.M. ALBERTO,L.F.C. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
GOUVEIA Jr,J.R.R. AMARAL,F.M. ALBERTO,L.F.C. |
dc.subject.por.fl_str_mv |
dynamical systems nonlinear systems stability region boundary of the stability region subcritical Hopf equilibrium point |
topic |
dynamical systems nonlinear systems stability region boundary of the stability region subcritical Hopf equilibrium point |
description |
ABSTRACT A complete characterization of the boundary of the stability region of a class of nonlinear autonomous dynamical systems is developed admitting the existence of Subcritical Hopf nonhyperbolic equilibrium points on the boundary of the stability region. The characterization of the stability region developed in this paper is an extension of the characterization already developed in the literature, which considers only hyperbolic equilibrium point. Under the transversality condition, it is shown the boundary of the stability region is comprised of the stable manifolds of all equilibrium points on the boundary of the stability region, including the stable manifolds of the subcritical Hopf equilibrium points of type k, with 0 ≤ k ≤ n - 2, which belong to the boundary of the stability region. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-08-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512016000200211 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512016000200211 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.5540/tema.2016.017.02.0211 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
dc.source.none.fl_str_mv |
TEMA (São Carlos) v.17 n.2 2016 reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) instname:Sociedade Brasileira de Matemática Aplicada e Computacional instacron:SBMAC |
instname_str |
Sociedade Brasileira de Matemática Aplicada e Computacional |
instacron_str |
SBMAC |
institution |
SBMAC |
reponame_str |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
collection |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
repository.name.fl_str_mv |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacional |
repository.mail.fl_str_mv |
castelo@icmc.usp.br |
_version_ |
1752122220173328384 |