Parallel Implementations of RCM Algorithm for Bandwidth Reduction of Sparse Matrices
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512017000300449 |
Resumo: | ABSTRACT The Reverse Cuthill-McKee (RCM) algorithm is a well-known heuristic for reordering sparse matrices. It is typically used to speed up the computation of sparse linear systems of equations. This paper describes two parallel approaches for the RCM algorithm as well as an optimized version of each one based on some proposed enhancements. The first one exploits a strategy for reducing lazy threads, while the second one makes use of a static bucket array as the main data structure and suppress some steps performed by the original algorithm. These related changes led to outstanding reordering time results and significant bandwidth reductions. The performance of two algorithms is compared with the respective implementation made available by Boost library. The OpenMP framework is used for supporting the parallelism and both versions of the algorithm are tested with large sparse and structural symmetric matrices. |
id |
SBMAC-1_b38e1d13c988fb8de8441332f1089e89 |
---|---|
oai_identifier_str |
oai:scielo:S2179-84512017000300449 |
network_acronym_str |
SBMAC-1 |
network_name_str |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
repository_id_str |
|
spelling |
Parallel Implementations of RCM Algorithm for Bandwidth Reduction of Sparse Matricesparallel RCMbandwidth reductionsparse matricesABSTRACT The Reverse Cuthill-McKee (RCM) algorithm is a well-known heuristic for reordering sparse matrices. It is typically used to speed up the computation of sparse linear systems of equations. This paper describes two parallel approaches for the RCM algorithm as well as an optimized version of each one based on some proposed enhancements. The first one exploits a strategy for reducing lazy threads, while the second one makes use of a static bucket array as the main data structure and suppress some steps performed by the original algorithm. These related changes led to outstanding reordering time results and significant bandwidth reductions. The performance of two algorithms is compared with the respective implementation made available by Boost library. The OpenMP framework is used for supporting the parallelism and both versions of the algorithm are tested with large sparse and structural symmetric matrices.Sociedade Brasileira de Matemática Aplicada e Computacional2017-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512017000300449TEMA (São Carlos) v.18 n.3 2017reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)instname:Sociedade Brasileira de Matemática Aplicada e Computacionalinstacron:SBMAC10.5540/tema.2017.018.03.0449info:eu-repo/semantics/openAccessRODRIGUES,T.N.BOERES,M.C.S.CATABRIGA,L.eng2018-02-08T00:00:00Zoai:scielo:S2179-84512017000300449Revistahttp://www.scielo.br/temaPUBhttps://old.scielo.br/oai/scielo-oai.phpcastelo@icmc.usp.br2179-84511677-1966opendoar:2018-02-08T00:00TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacionalfalse |
dc.title.none.fl_str_mv |
Parallel Implementations of RCM Algorithm for Bandwidth Reduction of Sparse Matrices |
title |
Parallel Implementations of RCM Algorithm for Bandwidth Reduction of Sparse Matrices |
spellingShingle |
Parallel Implementations of RCM Algorithm for Bandwidth Reduction of Sparse Matrices RODRIGUES,T.N. parallel RCM bandwidth reduction sparse matrices |
title_short |
Parallel Implementations of RCM Algorithm for Bandwidth Reduction of Sparse Matrices |
title_full |
Parallel Implementations of RCM Algorithm for Bandwidth Reduction of Sparse Matrices |
title_fullStr |
Parallel Implementations of RCM Algorithm for Bandwidth Reduction of Sparse Matrices |
title_full_unstemmed |
Parallel Implementations of RCM Algorithm for Bandwidth Reduction of Sparse Matrices |
title_sort |
Parallel Implementations of RCM Algorithm for Bandwidth Reduction of Sparse Matrices |
author |
RODRIGUES,T.N. |
author_facet |
RODRIGUES,T.N. BOERES,M.C.S. CATABRIGA,L. |
author_role |
author |
author2 |
BOERES,M.C.S. CATABRIGA,L. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
RODRIGUES,T.N. BOERES,M.C.S. CATABRIGA,L. |
dc.subject.por.fl_str_mv |
parallel RCM bandwidth reduction sparse matrices |
topic |
parallel RCM bandwidth reduction sparse matrices |
description |
ABSTRACT The Reverse Cuthill-McKee (RCM) algorithm is a well-known heuristic for reordering sparse matrices. It is typically used to speed up the computation of sparse linear systems of equations. This paper describes two parallel approaches for the RCM algorithm as well as an optimized version of each one based on some proposed enhancements. The first one exploits a strategy for reducing lazy threads, while the second one makes use of a static bucket array as the main data structure and suppress some steps performed by the original algorithm. These related changes led to outstanding reordering time results and significant bandwidth reductions. The performance of two algorithms is compared with the respective implementation made available by Boost library. The OpenMP framework is used for supporting the parallelism and both versions of the algorithm are tested with large sparse and structural symmetric matrices. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-12-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512017000300449 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512017000300449 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.5540/tema.2017.018.03.0449 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
dc.source.none.fl_str_mv |
TEMA (São Carlos) v.18 n.3 2017 reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) instname:Sociedade Brasileira de Matemática Aplicada e Computacional instacron:SBMAC |
instname_str |
Sociedade Brasileira de Matemática Aplicada e Computacional |
instacron_str |
SBMAC |
institution |
SBMAC |
reponame_str |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
collection |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
repository.name.fl_str_mv |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacional |
repository.mail.fl_str_mv |
castelo@icmc.usp.br |
_version_ |
1752122220234145792 |