Parallel Implementations of RCM Algorithm for Bandwidth Reduction of Sparse Matrices

Detalhes bibliográficos
Autor(a) principal: RODRIGUES,T.N.
Data de Publicação: 2017
Outros Autores: BOERES,M.C.S., CATABRIGA,L.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512017000300449
Resumo: ABSTRACT The Reverse Cuthill-McKee (RCM) algorithm is a well-known heuristic for reordering sparse matrices. It is typically used to speed up the computation of sparse linear systems of equations. This paper describes two parallel approaches for the RCM algorithm as well as an optimized version of each one based on some proposed enhancements. The first one exploits a strategy for reducing lazy threads, while the second one makes use of a static bucket array as the main data structure and suppress some steps performed by the original algorithm. These related changes led to outstanding reordering time results and significant bandwidth reductions. The performance of two algorithms is compared with the respective implementation made available by Boost library. The OpenMP framework is used for supporting the parallelism and both versions of the algorithm are tested with large sparse and structural symmetric matrices.
id SBMAC-1_b38e1d13c988fb8de8441332f1089e89
oai_identifier_str oai:scielo:S2179-84512017000300449
network_acronym_str SBMAC-1
network_name_str TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
repository_id_str
spelling Parallel Implementations of RCM Algorithm for Bandwidth Reduction of Sparse Matricesparallel RCMbandwidth reductionsparse matricesABSTRACT The Reverse Cuthill-McKee (RCM) algorithm is a well-known heuristic for reordering sparse matrices. It is typically used to speed up the computation of sparse linear systems of equations. This paper describes two parallel approaches for the RCM algorithm as well as an optimized version of each one based on some proposed enhancements. The first one exploits a strategy for reducing lazy threads, while the second one makes use of a static bucket array as the main data structure and suppress some steps performed by the original algorithm. These related changes led to outstanding reordering time results and significant bandwidth reductions. The performance of two algorithms is compared with the respective implementation made available by Boost library. The OpenMP framework is used for supporting the parallelism and both versions of the algorithm are tested with large sparse and structural symmetric matrices.Sociedade Brasileira de Matemática Aplicada e Computacional2017-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512017000300449TEMA (São Carlos) v.18 n.3 2017reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)instname:Sociedade Brasileira de Matemática Aplicada e Computacionalinstacron:SBMAC10.5540/tema.2017.018.03.0449info:eu-repo/semantics/openAccessRODRIGUES,T.N.BOERES,M.C.S.CATABRIGA,L.eng2018-02-08T00:00:00Zoai:scielo:S2179-84512017000300449Revistahttp://www.scielo.br/temaPUBhttps://old.scielo.br/oai/scielo-oai.phpcastelo@icmc.usp.br2179-84511677-1966opendoar:2018-02-08T00:00TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacionalfalse
dc.title.none.fl_str_mv Parallel Implementations of RCM Algorithm for Bandwidth Reduction of Sparse Matrices
title Parallel Implementations of RCM Algorithm for Bandwidth Reduction of Sparse Matrices
spellingShingle Parallel Implementations of RCM Algorithm for Bandwidth Reduction of Sparse Matrices
RODRIGUES,T.N.
parallel RCM
bandwidth reduction
sparse matrices
title_short Parallel Implementations of RCM Algorithm for Bandwidth Reduction of Sparse Matrices
title_full Parallel Implementations of RCM Algorithm for Bandwidth Reduction of Sparse Matrices
title_fullStr Parallel Implementations of RCM Algorithm for Bandwidth Reduction of Sparse Matrices
title_full_unstemmed Parallel Implementations of RCM Algorithm for Bandwidth Reduction of Sparse Matrices
title_sort Parallel Implementations of RCM Algorithm for Bandwidth Reduction of Sparse Matrices
author RODRIGUES,T.N.
author_facet RODRIGUES,T.N.
BOERES,M.C.S.
CATABRIGA,L.
author_role author
author2 BOERES,M.C.S.
CATABRIGA,L.
author2_role author
author
dc.contributor.author.fl_str_mv RODRIGUES,T.N.
BOERES,M.C.S.
CATABRIGA,L.
dc.subject.por.fl_str_mv parallel RCM
bandwidth reduction
sparse matrices
topic parallel RCM
bandwidth reduction
sparse matrices
description ABSTRACT The Reverse Cuthill-McKee (RCM) algorithm is a well-known heuristic for reordering sparse matrices. It is typically used to speed up the computation of sparse linear systems of equations. This paper describes two parallel approaches for the RCM algorithm as well as an optimized version of each one based on some proposed enhancements. The first one exploits a strategy for reducing lazy threads, while the second one makes use of a static bucket array as the main data structure and suppress some steps performed by the original algorithm. These related changes led to outstanding reordering time results and significant bandwidth reductions. The performance of two algorithms is compared with the respective implementation made available by Boost library. The OpenMP framework is used for supporting the parallelism and both versions of the algorithm are tested with large sparse and structural symmetric matrices.
publishDate 2017
dc.date.none.fl_str_mv 2017-12-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512017000300449
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512017000300449
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.5540/tema.2017.018.03.0449
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
dc.source.none.fl_str_mv TEMA (São Carlos) v.18 n.3 2017
reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
instname:Sociedade Brasileira de Matemática Aplicada e Computacional
instacron:SBMAC
instname_str Sociedade Brasileira de Matemática Aplicada e Computacional
instacron_str SBMAC
institution SBMAC
reponame_str TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
collection TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
repository.name.fl_str_mv TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacional
repository.mail.fl_str_mv castelo@icmc.usp.br
_version_ 1752122220234145792